
70 Int. J. Computational Science and Engineering, Vol. 10, Nos. 1/2, 2015

Copyright © 2015 Inderscience Enterprises Ltd.

Ensuring sustainability of web services dependent
processes

Tomasz Miksa* and Rudolf Mayer
Secure Business Austria,
Favoritenstrasse 16, 1040 Vienna, Austria
Email: tmiksa@sba-research.org
Email: mayer@ifs.tuwien.ac.at
*Corresponding author

Andreas Rauber
Institute for Software Technology and Interactive Systems,
Vienna University of Technology,
Favoritenstrasse 9-11, 1040 Vienna, Austria
Email: rauber@ifs.tuwien.ac.at

Abstract: High dependence on web services and service-oriented architecture affects not only
business solutions, but also scientific research. Web services may be delivered by third parties,
and thus are candidates for outsourcing. However, they represent a source of risks, which can
jeopardise the robustness of processes. Hence, there is a need for actions which can contribute to
the mitigation of possible threats to the continuity of processes. In this paper, risk affecting
processes are classified, followed by a discussion about particular changes stemming from web
services. Three distinct approaches allowing improvements are described: a newly proposed web
services monitoring framework supported by a software solution, the concept of resilient web
services, which specifies new design requirements for web services, and digital preservation
strategies, which apart from long-term benefits can support sustainability of currently running
processes.

Keywords: web service; resilient; monitoring; service-oriented architecture; SOA; business
continuity management; BCM; digital preservation; escrow; eScience; sustainability; business
process.

Reference to this paper should be made as follows: Miksa, T., Mayer, R. and Rauber, A. (2015)
‘Ensuring sustainability of web services dependent processes’, Int. J. Computational Science and
Engineering, Vol. 10, Nos. 1/2, pp.70–81.

Biographical notes: Tomasz Miksa has been working as a researcher at SBA since 2012.
Currently, he is involved in the preservation of business processes in the EU-funded FP7 project
TIMBUS. He is also a student of Vienna PhD School of Informatics, where he is conducting his
research on eScience, digital preservation and research infrastructures. He received his MSc
Engineering degree in Systems and Computer Networks from Wroclaw University of
Technology, Poland.

Rudolf Mayer has been working as a Research Assistant at SBA since 2011. He received his MSc
in Business Informatics from Vienna University of Technology in 2004, his MSc in Computer
Science in 2012, and is currently working towards his PhD. Previously, he has worked for several
years as a researcher at the Vienna University of Technology, where he has been involved in
numerous national and international research projects, including DELOS, multimedia understand
through semantics, computation and learning (MUSCLE), preservation and long-term access
networked services (PLANETS), and digital memory engineering (DME). His current research
focus lies on the preservation of business processes in the EU-funded FP7 project TIMBUS. He
is an author of numerous papers at refereed international conferences, journal articles and book
chapters. He is reviewer and co-reviewer for several international conferences.

Andreas Rauber is an Associate Professor at the Department of Software Technology and
Interactive Systems (IFS) at the Vienna University of Technology (TU-Wien). Furthermore, he is
President of AARIT, the Austrian Association for Research in IT and an Honorary Research
Fellow in the Department of Humanities Advanced Technology and Information Institute
(HATII), University of Glasgow. He received his PhD in Computer Science from the Vienna
University of Technology in 2000. His research interests cover the broad scope of information
spaces, including specifically text and music information retrieval and organisation, information
visualisation, as well as data analysis and digital preservation.

 Ensuring sustainability of web services dependent processes 71

1 Introduction

Service-oriented architecture (SOA) is a firm foundation of
cloud computing. By modular and elastic approaches, SOA
allows to create IT architectures which can be adapted
quickly to changes of business requirements (Mulholland et
al., 2008). Business processes (BP) in SOA consists of
discrete, loosely-coupled services which interoperate using
a network and have clearly defined communication
interfaces. Web services (WSs) are the most common way
to realise SOA services. New business needs can be quickly
embodied, as services can be reused and easily plugged into
new processes, which decreases the time needed for
development (van den Berg et al., 2007). Not only internal
resources can be accessed with the use of WSs, but also
external resources, which are hosted and maintained by
third-party organisations. Nowadays information ranging
from credit scores to weather data are provided by a small
set of organisations as opposed to the large number of
organisations which consume this data.

High dependence on WSs and SOA is not limited to the
business domain, but can be encountered also in the domain
of scientific research. In particular, the emerging paradigm
of science referred to as e-Science (Hey et al., 2009) is
highly influenced by this approach. The increasing
computational power of computers and throughput of
information systems have enabled researchers to make their
scientific breakthroughs by processing, linking and
exchanging multiple huge datasets (Elmroth et al., 2009).
These datasets are very often referred to as ‘big data’
(Thanos et al., 2012). Results obtained by research
conducted in this way are said to be ‘born digital’ (National
Science Foundation, 2009). e-Science cooperation is very
often realised within research infrastructures (RI), where
different stakeholders cooperate and share information to
look for solutions to important problems of society.
Problems tackled span across several fields, for example
energy, food, transportation, climate, societies, or health
(Copenhagen Research Forum, 2012). RI rely on
information systems and allow exchange of facilities,
resources and services. Their cooperation would be hardly
possible if SOA architecture and extensive usage of WSs
had not been applied.

While WSs bring a wealth of new possibilities and
flexibility to business and scientific processes, they also
introduce new risks for the process execution. We can
distinguish three basic possible threats. Firstly, the WS
hosted by a third party can become unavailable, which can
bring the execution of the process to a halt. The reasons for
such unavailability can range from temporary technical
problems, to a permanent outage due to, e.g., bankruptcy of
the service provider. Secondly, the WS can change its
communication interface. This might not always jeopardise
the full execution of the process, but may cause short
downtimes in process execution, until the changes will be
adopted into the process. Thirdly, the behaviour of the WS
may change, while the interface stays the same. Unlike the
first two threats, this threat is extremely hard to detect, as
the process may not break, but will still deliver the outputs,

which, however, might not be correct, or different from
what is expected. This jeopardises correct reasoning when
making scientific discoveries, as well as endangers business
continuity.

Failure to provide business continuity may often lead to
significant financial losses and may result in loss of
business. A highly widespread approach used to tackle
potential adverse circumstances is business continuity
management (BCM). The main objective of BCM is to
assess possible risks and establish plans which can minimise
the negative impact of hazardous events on managed BP. In
case of BP which rely on WSs, the process operator may not
be the owner of all dependent WSs. In situations when a BP
operator must be able to prove correctness of process
execution because of liability cases, service level
agreements (SLA) or other legal contracts, it is of particular
importance to them to be able to detect any alterations in
process execution. Thus BCM plans must take into account
the threats posed by SOA architecture. Therefore, tools that
monitor correct execution of WSs and new requirements for
WS implementation are needed.

This paper discusses the issues of ensuring continuous
faithful execution of processes in highly distributed
environments which use WSs to perform tasks. It outlines
major concerns which jeopardise business continuity and
pays particular attention to alterations which may occur at
WS level. The motivation for the necessity to automate
monitoring of WSs is discussed in detail. We also introduce
a solution which enables to intercept messages exchanged
between a WS and a client, analyse their content, reason
about the nature of the analysed WS, and finally create a
mock-up of it. Furthermore, a set of recommendations and
guidelines enabling categorisation and improvements in the
design of WSs are presented. The concept of resilient WSs
is shown as a solution which would reduce threats to
business continuity and possibly decrease the need for
active monitoring of services. Finally, preservation
strategies, which allow to secure continuous execution of
WSs in their current form, are presented.

The paper is organised as follows. Section 2 presents
threats to business process continuity and gives an outlook
on monitoring changes in processes. A framework for
monitoring WSs for changes is presented in Section 3, the
implementation of which is detailed in Section 4. Section 5
introduces the concept of resilient WSs. In Section 6
preservation strategies that enhance sustainability of
currently running processes are shown. Related work is
discussed in Section 7, and conclusions and future work are
provided in Section 8.

2 Business process continuity threats and
monitoring

Nowadays the saying ‘Change is the only constant factor’ is
one of the most common business principles (Frame, 2002).
External factors are the main drivers that force organisations
to continually adapt. This can be caused by financial crisis,
legislation and regulations, compliance criteria, market

72 T. Miksa et al.

opportunities, etc. SOA supports the requirement of being
ready for changes (Mulholland et al., 2008). However, we
argue that the application of SOA principles in the
structuring of processes and systems can itself introduce
another set of possible change factors affecting the business
directly. These are the changes coming from the information
and communication technology (ICT) systems in which the
SOA solution is deployed. Threats arising from the usage of
SOA and especially from WSs are presented later in this
section. Owing to both external and internal influencers BP
have to be monitored. This is explained in more detail in
subsection ‘business process monitoring’. This paper deals
with changes coming from ICT. The external business
drivers, like those presented at the beginning of this
paragraph, are not in scope of considerations.

2.1 Business process monitoring

A need to monitor execution of processes is widely
recognised and implemented. It is manifested by business
activity monitoring (BAM) (McCoy, 2002). The goal of
BAM is to provide real time information about the status
and results of various tasks and processes, thus enabling to
make better business decisions and quickly address detected
problems and opportunities. The characteristic feature of
BAM solutions are dashboards containing key performance
indicators (KPIs), which orchestrate reasoning over the
process state and support business process management
(BPM) decisions. Ready to deploy solutions are available at
portfolio of key players (IBM, HP, Oracle) in BPM.

However, the focus of BAM tools is on monitoring and
analysing the processes in view of maximising revenue and
modelling business needs. They are powerful tools for
managers, but are not able to detect directly any change of
execution stemming from changes in the underlying ICT
infrastructure – they were designed to facilitate responses to
external drivers for change. These BAM tools are business
tier tools, while technical tier tools are scarce. Currently,
monitoring for the equivalent execution of a process is not
common practice.

However, such a monitoring should be done
continuously in order to detect any change in the process
execution, before it affects a higher tier such as the business
tier. Furthermore, all tasks forming a business process must
be monitored separately, so that the variations can be
detected at the source. Otherwise, alterations in single tasks
may not be spotted when the KPIs or outputs of the whole
process are monitored at the macro level, as changes
simultaneously occurring at several stages of process
execution may result in the same KPI, while in fact they
will significantly vary in the way they were executed. Only
if proper execution of processes is monitored at technical
level, a trustworthy business process execution can be
guaranteed.

2.2 Sources of change

The ICT changes can be divided into two categories:
internal and external. All modifications done in software or

hardware owned by the process owner (PO) are classified as
internal. The external changes are all these variations which
are beyond control of the PO.

2.2.1 Internal changes

This category of changes includes all cases in which the PO
has the possibility to influence the behaviour of the system
performing a particular task. For example, changes in
software or hardware setup may result in alteration of task
execution. The problem of tracing the effects of, for
example, security updates applied to an operating
system or software components, driver updates, hardware
reconfigurations are well known, complex problems. When
the PO has scheduled some of these actions, he or she
should be aware that the correctness of business task
execution has to be verified. In the case of internal changes,
the PO can plan for these changes, and can very often
predict the possible threat.

2.2.2 External changes

This category of changes includes all cases in which the PO
does not have much possibility to influence the behaviour of
the system which performs a particular business task. In
cases when services are hosted or provided by third parties,
e.g., in a solution such as described by Hsieh et al. (2011),
the PO cannot suspect any changes unless being explicitly
informed in advance. For example, if part of the process
takes benefit of cloud computing at infrastructure as a
service (IaaS) or platform as a service (PaaS) level, and the
administrator of the cloud computing environment
reconfigures the hardware, modifies the software by
installing updates, or the cloud computing operating system
allocates different resources than usually, then the business
task can be affected. Changes can range from variations in
timing characteristics (e.g., higher delays), to unavailability
of the service.

2.2.3 Changes in WSs

WSs can be classified under both of above presented
categories, as they can be both run in-house or provided, as
in their original meaning, remotely by an external party.
They are also particular source of changes coming from ICT
affecting business process execution. Owing to their
widespread application nowadays, a special subsection of
this paper focuses on categorising possible ways of their
alteration. Four categories have been identified.

Firstly, the WS can become unavailable. This will likely
stop execution of the process (unless alternative paths and
exception handling has been implemented for such a case).
The reasons for its unavailability can range from temporary
technical problems, to bankruptcy of the service provider.
Such situations are straight forward to detect, for example
by using time-outs which would alert to unavailability of the
WS.

 Ensuring sustainability of web services dependent processes 73

Secondly, the WS can change its communication
interface, not always jeopardising the full execution of the
process. Such situation may also be easily detected. It may
require short pauses in the process execution until the
changes will be adopted into the process. Of course, in case
of significant changes in the communication interface
(e.g., switch from REST to WSDL), time needed for
reconnecting the WS into the process may require more
effort.

Thirdly, the functionality of the WS may change, which
denotes that the outputs of the WS change, while the
interface stays the same. Unlike the first two threats, this
threat is hard to detect, as the process may not break, but
instead will be delivering outputs which are not correct or
different from expected. Such a situation might be detected
only much later and on a different level, e.g., in the earlier
mentioned KPIs. Such a situation may occur for several
reasons. One of them is changes at the semantic level, e.g.,
switching the unit of measurement from inches to
centimetre owing to a server configuration change. Other
possibilities are bug fixes in the underlying algorithm
(which may introduce other bugs as well), or intentional
changes in the functionality, e.g., faster but less accurate
computational algorithms.

The fourth category of changes is behavioural changes,
which may not always refrain the process from correct
execution, but can occur temporally and therefore be hard to
notice. The examples of such cases could be different
timing characteristics or delays, effects of buffering, etc.
They also need to be detected, because there may be a
threshold from which the WS cannot deliver its
functionality properly.

Both functional and behavioural changes are of big
importance when dealing with WSs executed by Humans.
BPEL4People (Kloppmann et al., 2005) is an extension of
Business Process Execution Language (BPEL) for WSs
(OASIS, 2007). It allows to specify tasks with a use of
WSDL and interweave software and human tasks in a
transparent way with a business process which is deployed
in SOA system. People are said to be more error prone than
machines and therefore the likelihood of a mistake is
higher in case of human-based WS. If a task-assigned
person sends back incorrect data, then one can observe
functional change. When a person is overloaded with
requests or is not available, the responses may appear with a
delay or get buffered, then one can detect alteration of
behaviour.

3 Web services monitoring framework

The risks incurred by changes mentioned earlier call for a
regular and automatic monitoring of the WSs utilised in a
SOA. Yet, related work (see Section 7) shows that there is a
lack of tools available to monitor BP on a technical tier. We
therefore present a web services monitoring framework
(WSMF), which allows to detect all possible alterations in
WS execution and thus enables the sustainable and
trustworthy execution of processes. Please note that in some

cases, especially when processes span across several
organisations or are not well documented, it may be
challenging to identify which tasks depend on WSs.
This can be achieved by source code or binary code
analysis, or by monitoring and analysing network activity
caused by a process. This problem is, however, not
in the scope of this paper, and therefore the assumption is
made that WS monitoring starts with a list of services
provided.

Monitoring of WSs is a process which has several
similarities to Test Automation from software testing. In
automated testing, the idea is that special software controls
the execution of tests and compares the actual outcomes of
the software under development to a ground truth. Most
tools (cf., Section 7) which allow to verify the behaviour of
WSs apply this rule. They vary in ways the WS
communication is intercepted, levels of abstraction at which
the comparison is made, kinds of WSs it can be applied to,
and finally the kind of change which is being examined.
Details and examples of solutions are discussed in the
Related Work section (cf., Section 7).

The common problem of all mentioned solutions is the
fact that they demand some specific knowledge: not only
the kind and the nature of the WS, but also the kind of
change which will be monitored, is required to deploy a
proper solution. In typical situations, however, only the
URL and interface of the service are known. There might be
no information on whether the WS is conversational,
stateful, deterministic, etc. This kind of knowledge is,
however, required to apply the correct tool. The monitoring
framework presented in this paper does not hold these
requirements and limitations. It allows to investigate any
kind of WS, and facilitates reasoning about the kind and
nature of a service. Then, if the WS is deterministic, the
monitoring process can be launched and all four types of
changes (cf., Section 2.2.3) can be detected. In case of the
WS being non-deterministic, the monitoring framework is
not able to detect any functional changes, but the other three
types of change can still be monitored.

Our proposed WSMF consists of the following steps.

1 Capture
As a prerequisite for any subsequent monitoring
activities, the communication to and from the service
has to be intercepted and stored. If traffic is captured at
the network layer, it allows to conduct this process
transparently without introducing any changes to the
examined part of the business process. Solutions which
redirect the communication with the WS through a
special proxy server, which would intercept the data
and pass on the communication to the final destination,
are another possibility, but require changes to the
process setup and can themselves be a source of errors.

2 Transform
Once a sufficiently large set of data is collected, it has
to be transformed to a form in which requests and
corresponding responses are grouped. Additional
metadata and metrics also have to be transformed or

74 T. Miksa et al.

calculated at this step. For example, a pair of request
and response can be enriched by number of
occurrences, timestamps and calculated interval
between sending the request and receiving the response.
The more information is collected at this step, the more
complex reasoning can be conducted subsequently.

3 Reason
At this step the collected data is analysed, and the type
of WS is automatically determined from the data. If for
the same request different responses exist, then a WS is
deemed to be non-deterministic, otherwise it is
deterministic, from the point of view of a (ignorant)
observer. When it is deterministic, monitoring for
changes in functionality is possible, otherwise not.
Reasons for perceived non-determinism can be
manifold. In many cases, it will be due to the
dependence on a specific state, which could, e.g., be the
current date and time.

4 Monitor
Requests collected in the first step are used to query the
WS. Responses collected at this step are compared to
those collected in the capture step. This step is replayed
according to the planned schedule, for example every
day or every week, etc.

The following situations can occur during Monitor step. If
no responses are received, then it may mean that the WS is
not available: a change in availability occurred, or a change
in the interface caused the unavailability. If only some of
the messages are missing, then we can assume that the
service is available but only a part of the interface has
changed. When the service is deterministic and responses do
not match the ground truth, then it indicates a change in
functionality. If the service is non-deterministic, changes in
functionality cannot be detected easily. If timestamps of
recorded messages are stored and time intervals between
request and response are calculated, then a change in
response timing behaviour can be detected regardless of
determinism. The time period it takes to detect such changes
is mainly driven by the interval of checks defined in the
monitoring schedule.

A crucial requirement for using the approach described
above is that the WS it is applied to does not cause any
changes on the world outside the system observed. In
situations where this is not the case, e.g., credit card
payment transaction systems, such replaying of messages
for monitoring purposes cannot be employed. Thus, while
not universally applicable, the approach will be useful for a

majority of situations, specifically in e-Science settings,
where WSs are deployed primarily for information
transformation, collection or computational services.

4 WSMF implementation

In this section, we detail our implementation of the WSMF
described above. The solution consists of three tools:

• wsRecorder
• wsTransformer
• wsMonitor.

wsRecorder performs the actions specified in the first step
of the framework, the capture step. It collects the data which
will be used as a ground truth. wsTransformer realises the
second step of the framework. It transforms the data
collected by wsRecorder into a database. The third and
fourth step of the WSMF is realised by wsMonitor. It
enables to query the analysed WS by sending requests
stored in the database created in the preceding step, and
compare new responses against the ground truth,
performing automatic reasoning on the type of WS. The
architecture of this implementation is depicted in Figure 1.
It depicts a part of a business process in which Tasks X and
Task Y communicate over the network. Task Y is the WS
being analysed. The other components depicted in the
picture are described in more detail below.

4.1 wsRecorder

This application is responsible for capturing and storing the
WS data. It asks for the location of a WSDL file or URL
address in case of RESTful services. Via a graphical user
interface (see Figure 2) the user can select from a list of
available capture devices the one that should monitor the
traffic and the location for an output file, which is in the
format of a PCAP dump file. PCAP is the packet capture
API for capturing network traffic. PCAP files can, e.g., also
be accessed using WireShark (Combs et al., 2012), a well
known packet analysis tool in networking community.
wsRecorder is totally transparent to the business process
setup and execution, and does thus not require any changes
in the ongoing process – no kind of proxy mechanism is
needed. wsRecorder collects HTTP packets which have the
same destination IP address as defined in the WSDL Port
section (SOAP)/URL address (RESTful).

 Ensuring sustainability of web services dependent processes 75

Figure 1 Logical structure of the solution which implements WSMF (see online version for colours)

Figure 2 User interface of the wsRecorder module, which allows for capturing of network traffic (see online version for colours)

4.2 wsTransformer

This tool analyses the data obtained by wsRecorder and
creates ground truth for wsMonitor. The main task of this
program is to transform recorded packets into a set of pairs
of requests and responses and stores them in a database.
Execution of the program can be divided into two stages.
First, a TCP Stream is recreated, taking into account IP
fragmenting and TCP segmentation, and stored into a text
file. Second, the body of packets is extracted and loaded
into the database. Such a design allows to decouple the TCP
Stream reconstruction from the database insertion process.
The current implementation does not take into the account
the HTTP chunking which may occur in some WSs. In such
cases, part of the program responsible for TCP Stream
creation can be substituted. Currently, there is no Java
library that can assemble the TCP Stream correctly with
respect to all details. Future implementations of JNetPcap
(Bednarczyk, 2012) may provide such functionality. An
alternative solution for today is the use of Linux tools like
TcpTrace (Ostermann, 2012), but in this case platform
independence is lost. The output of the tool are a database
and a TCP stream in a text file. The database structures the
request and response pairs, together with any metadata
captured or computed. This includes timing and duration of
the request, and frequency of identical request/response
pairs.

4.3 wsMonitor

The wsMonitor (see Figure 3) is capable of sending
requests fetched from the database and comparing
responses received to the ones stored in the database. The
required input is the location of the database and, again, the
location of the WS. The output of the tool is a report
displaying detected changes or confirmation that no changes
occurred. The monitor can detect changes in availability,
timing behaviour, in the interface definition (WSDL), and in
the functionality. The monitoring component has been
tested on a couple of WSs that have been developed
in our group, where the following conditions have been
simulated:

• unavailability of the service, by stopping the service or
moving it to a different location

• change in response behaviour, by adding random delays
before processing the requests

• changes in the interface of other services specified in
the same WSDL definition, without affecting the
service currently tested

• changes in the interface of the service currently tested,
by adding a number of bogus parameters

• changes in the functionality of the service, by adding a
random component to the computation.

76 T. Miksa et al.

Figure 3 User interface of the wsMonitor module, which allows to monitor for changes in a WS (see online version for colours)

The monitoring framework was able to correctly detect and
classify these modifications.

4.4 Comments and future work

Two aspects of the suggested approach have to be
emphasised. First, by capturing the network traffic no
changes to currently working system have to be done,
contrary to solution using HTTP proxies. Future work,
however, will focus on implementing also such a proxy
solution, to have an alternative way of capturing the
communication with the service. Second, the system can
support capture of not only WSDL-based WSs but also
RESTful services. Moreover, the modular design of the
solution allows to substitute or upgrade components without
influence on correctness of the execution of the whole
process. Finally, the solution allows basic reasoning about
frequency of requests and responses, because the database
stores the information on how many times the given pair of
request and response messages have been detected.

5 Resilient WSs

The WSMF presented in Section 3 is a solution which can
be applied to currently deployed services. In fact, the
framework is an attempt to minimise negative impacts of
insufficient WS specification standards. Analogously to
prevention being better than cure, we postulate that a good
design is better than ad-hoc actions. Therefore, the aim of
this section is to present a set of improvements in the
specification of WSs, which should lead to higher
sustainability of processes, as well as reducing the need for
continuous monitoring. We will call such specified services
‘resilient web services’.

We start with a brief overview on the state of the art.
The universal description discovery and integration (UDDI)

is a registry which holds information on registered WSs.
However, the registration of the service is not necessary, nor
does the registry contain sufficient additional information
on the service, which would allow the user to obtain
information on the kind, nature, behaviour, quality, etc.
There are some attempts to enrich the purely functional
description of WSs (bindings, ports, etc.) with performance
aspects, namely quality of service (QoS). These focus
mainly on timing aspects, availability, reputation (Comuzzi
and Pernici, 2009) and pricing (Liu et al., 2004). Most work
is dedicated to the creation of frameworks which enable
detection of WSs with different QoS (Tian et al., 2004),
rather than solutions which allow to specify explicitly the
common qualities for every service. W3C Working Group
(2003) specifies requirements for QoS for WSs. It lists 13
points which should be fulfilled, but none of them concerns
guaranteeing continuity or non-modifiability. Another
approach is represented by works dealing with versioning of
WSs. Yet in this case, approaches do not aim at specifying a
way to interweave versioning into WS specification,
but present workarounds to deal with the currently
underspecified WS standards (Kaminski et al., 2006). One
of the exceptions to this rule is Kalali et al. (2003), which
provides functional requirements for a registry which
notifies clients when a version of an interface changes.
Kaminski et al. (2006) is a good example of the current
common view on versioning. Versioning is understood as a
change of interface. Yet, changes in functionality while the
interface stays the same are not considered. This is an
obvious deficiency. Some best practices are described in
Brown and Ellis (2004), but they are predominantly a kind
of workaround for only one of the problems, rather than a
holistic solution. Summing up, there is a wide range of
approaches that deal with assessment of non-functional
aspects of WSs. In most cases, the need for these solutions

 Ensuring sustainability of web services dependent processes 77

arises from the fact that current specification of WSs is not
sufficient.

Resilient WSs should extend the current specification
with information that would ease their long-term
sustainability and usage. Thus, resilient WS definitions
should also provide information on the quality of the
services offered. Here, QoS should also comprise aspects of
continuity and non-modifiability. For example, one of the
additional qualities could be the ‘minimal availability date’,
which would guarantee minimal deadline for execution of
the service in unchanged manner.

The concept of versioning should be revised in order to
cover also the changes coming from changes in
functionality (i.e., the same interface, but different results)
or behaviour (e.g., the same interface and functionality, but
faster execution). Resilient WSs should also provide a
mechanism to deliver notifications about these changes.
Such a mechanism could build on top of HTTP status codes,
which would be a solution for both SOAP and REST-based
services. For SOAP-based messages, additional information
on the changes could be transmitted in dedicated and
reserved section of the SOAP envelope. On the consumer
side, such notifications could be intercepted and handled
accordingly in the program logic. In addition for
transmitting such change notifications on request responses,
default interfaces could be designed to allow an active
querying of WSs, e.g., for the exact version number, or
whether changes have occurred since a specified last time of
access.

On top of changes to the WS itself, the users of resilient
WSs should be provided with notifications about potential
functional changes resulting from any modification in the
underlying system providing the WS, such as changes to the
OS or system. This would allow them to prepare action
scenarios in advance which will be deployed when
notification about changes arrives.

Another feature useful for the monitoring of WSs that
affect the world outside the observed system, such as the
previously mentioned payment transactions, would be a
testing mode, as it is frequently available for system testing
in similar conventional software modules. In such a mode, a
computational activity is performed, but not made
persistent. This would allow monitoring and testing of a WS
by co-activating this feature without actually performing the
actual action such as a booking, payment transaction or
others.

Among the core methods recommend for resilient WSs,
we could consider:

• identifyYourself(), returning the current version
number and auxiliary information such as last change
date, determinism/statefulness

• serviceChangesSince(Date), returning a log of changes
to the WS since the date provided as an argument

• identifySWEnvironment(), returning the (essential)
components of the software

• environment, such as the operating system (and
version), libraries

• identifyHWEnvironment(), returning the (essential)
components of the hardware

• environment, such as sensor specifications

• swEnvironmentChangesSince(Date) and
hwEnvironmentChangesSince(Date), returning a log of
changes to the environments since the date provided.

Obviously, part of this information might incur
vulnerabilities on a security level, the level of detail
provided should thus be parametrised on different levels,
depending on the trustworthiness of the environment or
authentication levels of the client services.

6 Preservation strategies

In this section, we discuss possible digital preservation
(DP) concepts and actions that can be employed to enhance
the long-term sustainability and ensure continuity of both
business and scientific processes.

DP can be defined as a set of actions and efforts whose
goal is to maintain digital objects accessible in an authentic
manner for a long term into the future. Its focus is not only
on ensuring physical preservation of content, but also on
ensuring logical and semantic preservation. A wide
range of strategies is possible and there is no optimal
solution for every case. DP has emerged mainly from
memory institutions and the cultural heritage sector
(National Science Foundation, 2002), where static objects
(e.g., images, text documents) are the focus of interest.
Nowadays, one can observe a broadening of scope towards
the business sector. In these areas, DP increasingly has to
deal with preserving interactive software, computing
systems or even complete BP or even the whole systems.
DP is considered as one of the value adding capabilities,
which can be utilised by business institutions, even though
their main focus is not DP itself.

Preservation of processes is a multilevel, complex task.
Preserving a description of a process is not sufficient itself,
especially when the ability to re-enact it in future has to be
guaranteed. Several dependencies and various metadata
have to be collected. Furthermore, validation mechanisms
which can verify if the preserved copy of the process is the
faithful copy of the original system need to be deployed
(Guttenbrunner and Rauber, 2012). When a process is
deployed in SOA system and employs WSs provided by
third-parties for its execution, then the problem becomes
even more complex. Limited access to services needs
special solutions. Some of them are discussed in the
following subsections. We would like to emphasise that
these solutions are also useful for improving continuity of
currently running processes. They bring double benefits to
the organisation owning the process. Current threats
jeopardising the process are decreased while the long-term
availability is improved.

78 T. Miksa et al.

6.1 WS mock-up

When the WS is provided by a third party, and no access to
the system hosting the service is provided, a suitable
solution in view of DP is to create a mock-up. A mock-up is
a simulation of the original WS, in its most basic form built
around a kind of lookup table. It is able to send back
responses to requests which have previously been recorded
from the original system. This approach is thus limited to
deterministic services, which always provide the same
response for the same request. Furthermore, only messages
which have been previously intercepted can be replayed.
The solution does not have any computing capabilities as
the original system had. However, in many cases the
information collected may be sufficient to meet legal
requirements or compliance regulations for documenting
and proofing a business or scientific process at a client.

We have successfully implemented the described
approach. For this purpose, the first three steps of
WSMF (cf., Section 3) have been used. wsRecorder
(see Section 4.1) and wsTransformer (see Section 4.2) were
used to record the real network traffic and transform it into a
database. Then a tool called wsPlayer, which is a simple
HTTP Server, was created. When a request is received by
wsPlayer, it extracts the body of HTTP packet, queries the
database created by wsTransformer and sends back the
response. If the given request existed in the database, a
packet with body obtained from database is sent. In other
cases, an HTTP error code is sent.

WS mock-up is useful for currently active processes. If
the original service is being monitored and changes to its
execution have been detected (e.g., unavailability), then the
process flow can be switched temporarily to the mock-up
until the source of the problem is identified and resolved.
When a WS is permanently unavailable, a substitute has to
be found. The mock-up can be used as a role model to
validate the identity of a proposed substitute WS. The
requests stored by the mock-up can be leveraged to query
the substitute, and responses received can be compared
against responses of the mock-up. This approach increases
the likelihood of matching a correct substitute in
comparison to relying on WS description only. Similar
concept which uses provenance data to find substitutes for
missing tasks in scientific workflows is described by
Belhajjame et al. (2011).

6.2 Escrow services

“Escrow is an ancient legal term referring to a deed which
only becomes effective upon the occurrence of a future
event” (CEN Workshop Agreement CWA 13620-1, 1999).
Nowadays this term is used when some (non)material
objects are deposited by the owner with an independent
third party known as the ‘escrow agent’. The agent holds the
objects according to a tripartite agreement made between
the agent, owner and the software user. In case of computer
science and software engineering, one can distinguish
between Source Code Escrow, where only the code of the
application is deposited, and Software Escrow, which is

more holistic approach (Draws et al., 2011). Software
Escrow encompasses the source code, but also libraries,
test cases, virtual machines, integrated development
environments, etc. There are several reasons which can
trigger execution of an Escrow agreement, for example
when the organisation owning the software goes bankrupt.
Then the deposited objects are handed to the customer who
can continue to use and maintain the product on its own.

Similar kinds of agreements could be applied to WSs.
When a PO decides to include external third party service in
their process, they can sign an agreement with the service
owner, which will state that when the service becomes
unavailable, the PO gets access to the underlying software
of the WS. This could enable the PO to redeploy the service
at his site and thus provide sustainability of business
process. This, of course, has to be a transitive solution,
requesting the WS provide to ensure identical Escrow
agreements with any third-party WS used by its own
service. Which artefacts should be deposited by the
Escrow agent, and the conditions that trigger execution
of the agreement are a broad topic out of scope of this
paper.

7 Related work

There are several approaches that tackle the problem of WS
monitoring, testing or validating. The first group of papers
have the WS-BPEL language as a common denominator.
The framework presented in Cao et al. (2010) generates and
executes automatically ‘online’ tests for conformance
testing of a composite of WSs described in BPEL. This
‘online’ approach has been combined with passive testing,
that verifies time traces with respect to a set of constraints in
Cao et al. (2011). Both papers are limited to WSs which are
implemented according to BPEL specification. When the
specification is unavailable, the methods cannot be applied.
Our framework does not have these limitations. It does not
require any a priori knowledge about WS internal details.
Furthermore, our implementation uses intercepted messages
from a real system, while authors of above papers generate
them. van der Aalst et al. (2008) address the problem of
checking how the actual behaviour of a service conforms to
the expected behaviour. A process model is defined in
BPEL and then transformed into Petri-nets. Conformance
checking is performed by comparing Petri-net against
recorded messages. This work focuses on a question if “the
service behaviour match the service specification”, while in
the WSMF we focus on detecting changes in the execution
of WSs which may affect process continuity. We use
intercepted messages from a live system as a ground truth.
In contrary to van der Aalst et al. (2008) we assume that no
other specification than WSDL or REST is given.

Verification of behavioural conformance of services
during run-time is presented in Dranidis et al. (2009). An
idea to apply Stream X-machines in order to check the
control flow of a WS and the values of the data in the
generated responses is shown. A classification of WSs is
also carried out in this paper. They distinguish three major

 Ensuring sustainability of web services dependent processes 79

criteria: conversational/non-conversational, private-state/
shared-state, transient-state/persistent-state. Similar to our
work, Dranidis et al. (2009) intercepts traffic from a live
system and provides continues monitoring for changes.
However, the capturing is done with a use of proxy
component and manual development of a Stream
X-machine is required. The other implies access to the WS
specification which limits the application of this method in
comparison to the WSMF.

The WS-TAXI framework, which seems to have higher
applicability during WS development and testing rather than
for monitoring of already deployed SOA solutions, is
presented in Bartolini et al. (2009). It combines the
coverage of WS operations with data-driven test generation.
It is able to deliver a complete suite of test messages ready
for execution, which were generated using a WSDL file.
Assumption that WSDL could be the only available
specification of a WS is in common with our approach. Yet,
the WS-TAXI generates and uses purely synthetic data
which may be quite different from the data exchanged in a
process. This is a drawback which does not exist in the
WSMF proposed by us.

Monitoring if SLA conditions are fulfilled by WSs is a
problem related to monitoring WSs for changes. In Goel and
Shyamasundar (2010) a run-time monitoring framework
which allows to concurrently access exchanged messages
and compare them against designed scenarios was designed
and developed. The work focuses on QoS aspects, an
example of time-out mechanism detecting unavailability of
the service is given. The same result can be achieved with a
use of our framework. Moreover, Goel and Shyamasundar
(2010) requires to model the monitored WS in Orc
language, whereas our solution can be immediately
deployed. In case of Goel et al. (2011) emphasise is put on
detection of violations at functional level. SLAs are
described formally using temporal logic and are used in
SLA monitor to verify the behaviour of WSs at
runtime. The authors demonstrate the capabilities of their
solution on an example of a detection of violation of
maximum response time. Our framework is also capable of
doing it without a necessity of being an expert in temporal
logics.

Versioning of WSs is discussed by Kaminski et al.
(2006) and Kalali et al. (2003). The former introduces a
technique called Chain of Adapters which enables to deploy
multiple versions of a WS simultaneously. Versioning is
understood as being compatible with several interfaces
which is not sufficient according to the concept of resilient
WSs. The second paper proposes creation of a service-
oriented monitoring registry (SOMR) which notifies service
requesters when a version of an interface changes or a
service becomes disabled. The authors of SOMR express
the demand for notification of changes as we do, but in their
opinion a centralised registry is needed, while we believe
that inbuilt mechanisms of resilient WSs are a better
solution. Tian et al. (2004) suggests to use an ontology to
enable QoS-aware selection and monitoring of WS. They
try to “close the gap between the WSs layer and the

underlying QoS-aware transport technologies”. Liu et al.
(2004) presents a QoS computation model for WS selection.
Experimentation with a QoS registry in a hypothetical
phone service provisioning is presented. The authors use the
following qualities to define QoS: execution duration,
reputation and execution price. Both of the above papers
emphasise that description of WSs should incorporate
information on quality metrics. This opinion is also
reflected in the concept of resilient WSs.

Comuzzi and Pernici (2009) presents a framework for
QoS-based WS contracting. It focuses on automation of the
WS contract specification and establishment. QoS
dimensions are also specified in this work and concern
mainly timing, reputation and routing. It seems
that the matchmaking mechanism described in Comuzzi and
Pernici (2009) could be adjusted to take advantage of
resilient WSs methods. For example standardised
methods to obtain information about resilient WS could
speed up the process of finding a substitute for a faulted
service.

8 Conclusions

This paper discussed the problem of providing business
continuity to processes deployed in highly distributed
systems that leverage SOA and use WSs for their
implementation. We outlined the current status of processes
monitoring and motivations for improvements. A
classification of possible change sources affecting processes
was conducted and special attention was drawn to changes
stemming from WSs. Furthermore, three approaches
allowing improvements have been discussed. First, we
discussed a WSMF that provides active monitoring of the
WSs employed in a business process, and thus allows to
detect disruptions at an early stage. The approach
represented by our framework provides active monitoring of
WSs for changes. It creates a system capable of detecting all
kinds of change in WSs identified in this paper. In addition
to this, an implementation of the framework was presented,
in order to prove the feasibility of the framework. Secondly,
this paper introduced the concept of resilient WSs as
another way of ensuring sustainability of processes. We
provide a set of recommendations and guidelines that would
allow notification on changes in WSs without the need of
active monitoring. Finally, the applicability of DP strategies
is shown, namely a WS mock-up and software escrows as a
contractual alternative.

Future work will focus on guidelines for improvements
in WSs design. An attempt to embody the concept of
resilient WSs has to be made. These improvements should
lead towards use of WSs in the same way as with
commercial off-the-shelf (COTS) software or hardware
products. They are designed to be integrated easily with
existing systems without the need for customisation. COTS
modules are easier to trace for changes, but still cause
difficulties in complex IT landscapes as experience shows.
Unless this vision can be achieved, development in active

80 T. Miksa et al.

monitoring of processes not only at the business but also at
the technical tier is required.

Acknowledgements

This research was co-funded by COMET K1, FFG –
Austrian Research Promotion Agency and by the European
Commission under the IST Programme of the 7th FP for
RTD – Project ICT 269940/TIMBUS.

References
Bartolini, C., Bertolino, A., Marchetti, E. and Polini, A. (2009)

‘WS-TAXI: a WSDL-based testing tool for web services’,
in ICST ‘09, International Conference on Software Testing
Verification and Validation, pp.326–335, April,
doi: 10.1109/ICST.2009.28.

Bednarczyk, M. (2012) ‘JNetPcap’ [online] http://jnetpcap.com/
(accessed 30 August 2012).

Belhajjame, K., Goble, C., Soiland-Reyes, S. and De Roure, D.
(2011) ‘Fostering scientific workflow preservation through
discovery of substitute services’, in 2011 IEEE 7th
International Conference on E-Science, pp.97–104,
December, doi: 10.1109/eScience.2011.22.

Brown, K. and Ellis, M. (2004) ‘Best practices for web services
versioning’ [online]
http://www.ibm.com/developerworks/webservices/library/ws
version/ (accessed 30 August 2012).

Cao, T-D., Castanet, R., Felix, P. and Morales, G. (2011) ‘Testing
of web services: tools and experiments’, in Services
Computing Conference (APSCC), 2011 IEEE Asia-Pacific,
pp.78–85, December, doi: 10.1109/APSCC.2011.23.

Cao, T-D., Felix, P., Castanet, R. and Berrada, I. (2010) ‘Online
testing framework for web services’, in Third International
Conference on Software Testing, Verification and Validation
(ICST), pp.363 –372, April, doi: 10.1109/ICST.2010.11.

CEN Workshop Agreement CWA 13620-1 (1999)
ESCROWGUIDE – Source Code Escrow – Guidelines for
Acquirers, Developers, Escrow Agents and Quality Assessors
– Part 1: An Introduction to Source Code Escrow, June.

Combs, G. et al. (2012) ‘WireShark’ [online]
http://www.wireshark.org/ (accessed 30 August 2012).

Comuzzi, M. and Pernici, B. (2009) ‘A framework for QoS-based
web service contracting’, ACM Trans. Web, July, Vol. 3,
No. 3, pp.10:1–10:52, ISSN 1559-1131. doi:
10.1145/1541822.1541825 [online]
http://doi.acm.org/10.1145/1541822.1541825.

Copenhagen Research Forum (2012) Visions for Horizon 2020,
Copenhagen.

Dranidis, D., Ramollari, E. and Kourtesis, D. (2009) ‘Run-time
verification of behavioural conformance for conversational
web services’, in ECOWS ‘09. Seventh IEEE European
Conference on Web Services, pp.139–147, November,
doi: 10.1109/ECOWS.2009.19.

Draws, D., Euteneuer, S., Simon, D. and Simon, F. (2011) ‘Short
term preservation for software industry’, in Proceedings of
the 8th International Conference on Preservation of Digital
Objects (iPres 2011), pp.130–139.

Elmroth, E., Nylen, M. and Oscarsson, R. (2009) ‘A user-centric
cluster and grid computing portal’, International Journal of
Computational Science and Engineering (IJCSE), July,
Vol. 4, No. 2, pp.127–134.

Frame, J.D. (2002) The New Project Management: Tools for an
Age of Rapid Change, Complexity, and Other Business
Realities, John Wiley & Sons, San Francisco.

Goel, N. and Shyamasundar, R.K. (2010) ‘Automatic monitoring
of SLAs of web services’, in Services Computing Conference
(APSCC), 2010 IEEE Asia-Pacific, pp.99–106, December,
doi: 10.1109/APSCC.2010.58.

Goel, N., Kumar, N.V.N. and Shyamasundar, R.K. (2011) ‘SLA
monitor: a system for dynamic monitoring of adaptive
web services’, in Web Services (ECOWS), Ninth IEEE
European Conference on, pp.109–116, September,
doi: 10.1109/ECOWS.2011.22.

Guttenbrunner, M. and Rauber, A. (2012) ‘A measurement
framework for evaluating emulators for digital preservation’,
ACM Trans. Inf. Syst., May, Vol. 30, No. 2, pp.14:1–14:28,
ISSN 1046-8188, doi: 10.1145/2180868.2180876 [online]
http://doi.acm.org/10.1145/2180868.2180876.

Hey, T., Tansley, S. and Tolle, K. (Eds.) (2009) The Fourth
Paradigm: Data-Intensive Scientific Discovery, Microsoft
Research, Redmond, Washington.

Hsieh, M-Y., Lin, H-Y. and Li, K-C. (2011) ‘A web-based travel
system using mashup in the RESTful design’, International
Journal of Computational Science and Engineering (IJCSE),
Vol. 6, No. 3, pp.185–191.

Kalali, B., Alencar, P. and Cowan, D. (2003) ‘A service-oriented
monitoring registry’, in Proceedings of the 2003 Conference
of the Centre for Advanced Studies on Collaborative
Research, CASCON ‘03, pp.107–121, IBM Press [online]
http://dl.acm.org/citation.cfm?id=961322.961340.

Kaminski, P., Muller, H. and Litoiu, M. (2006) ‘A design for
adaptive web service evolution’, in Proceedings of the 2006
International Workshop on Self-adaptation and
Self-managing Systems, SEAMS ‘06, pp.86–92, ACM,
New York, NY, USA, ISBN 1-59593-403-0, doi:
10.1145/1137677.1137694 [online]
http://doi.acm.org/10.1145/1137677.1137694.

Kloppmann, M., Koenig, D., Leymann, F., Pfau, G.,
Rickayzen, A., von Riegen, C., Schmidt, P. and Trickovic, I.
(2005) ‘WS-BPEL extension for people – BPEL4People’,
White paper, IBM/SAP, July.

Liu, Y., Ngu, A.H. and Zeng, L.Z. (2004) ‘QoS computation and
policing in dynamic web service selection’, in Proceedings of
the 13th International World Wide Web Conference on
Alternate Track Papers & Posters, WWW Alt. ‘04, pp.66–73,
ACM, New York, NY, USA, ISBN 1-58113-912-8,
doi: 10.1145/1013367.1013379 [online]
http://doi.acm.org/10.1145/1013367.1013379.

McCoy, D.W. (2002) Business Activity Monitoring: Calm Before
the Storm [online]
http://www.gartner.com/resources/105500/105562/105562.pd
f (accessed 30 August 2012).

Mulholland, A., Daniels, R. and Hall, T. (2008) The Cloud and
SOA – Creating an Architecture for Today and for the Future,
Capgemini and HP [online]
http://www.hp.com/hpinfo/analystrelations/wp_cloudcomputi
ng_soa_capgemini_hp.pdf (accessed 30 August 2012).

 Ensuring sustainability of web services dependent processes 81

National Science Foundation (2002) ‘It’s about time: research
challenges in digital archiving and long-term preservation’,
Final Report of the Workshop on Research Challenges in
Digital Archiving and Long-Term Preservation.

National Science Foundation (2009) ‘Harnessing the
power of digital data for science and society’, Report of the
Interagency Working Group on Digital Data to the
Committee on Science of the National Science and
Technology Council.

OASIS (2007) Web Services Business Process Execution
Language (WS-BPEL) Version 2.0, Organization for the
Advancement of Structured Information Standards, April.

Ostermann, S. (2012) ‘TcpTrace’ [online] http://www.tcptrace.org/
(accessed 30 August 2012).

Thanos, C., Manegold, S. and Kersten, M.L. (2012)
‘Big data – introduction to the special theme’, ERCIM News,
Vol. 89.

Tian, M., Gramm, A., Ritter, H. and Schiller, J. (2004) ‘Efficient
selection and monitoring of QoS-aware web services with the
WS-QoS framework’, in Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web
Intelligence, WI ‘04, pp.152–158, IEEE Computer Society,
Washington, DC, USA, ISBN 0-7695-2100-2, doi:
10.1109/WI.2004.60 [online]
http://dx.doi.org/10.1109/WI.2004.60.

van den Berg, M., Bieberstein, N. and van Ommeren, E. (2007)
SOA for Profit, A Manager’s Guide to Success with Service
Oriented Architecture, IBM Press, ISBN 9075414145,
9789075414141 [online] www.us.sogeti.com/it-research-
insight/ebook/SOA_for_Profit_Eng.pdf (accessed 30 August
2012).

van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A. and
Verbeek, E. (2008) ‘Conformance checking of service
behavior’, ACM Trans. Internet Technol., May, Vol. 8, No. 3,
pp.13:1–13:30, ISSN 1533-5399, doi:
10.1145/1361186.1361189 [online]
http://doi.acm.org/10.1145/1361186.1361189.

W3C Working Group (2003) ‘QoS for web services: requirements
and possible approaches’ [online]
http://www.w3c.or.kr/kr-offce/TR/2003/ws-qos/
(accessed 30 August 2012).

