Evaluation of Preserved Scientific Processes

Rudolf Mayer!, Mark Guttenbrunner!, and Andreas Rauber!-?

1 Secure Buisness Austria, Vienna, Austria
2 Vienna University of Technology, Austria

Abstract. Digital preservation research has seen an increased focus is
on objects that are non-deterministic but depend on external events like
user input or data from external sources. Among those is the preserva-
tion of scientific processes, aiming at reuse of research outputs. Ensuring
that the preserved object is equivalent to the original is a key concern,
and is traditionally measured by comparing significant properties of the
objects. We adapt a framework for comparing emulated versions of a
digital object to measure equivalence also in processes.

1 Introduction

Digital data is in its nature volatile, and always needs an environment in which it
is rendered to a form that makes it useful. The interpretation of the bitstream is
the subject of digital preservation (DP) research. Two strategies have evolved as
the most promising. Migrating a digital object means continuously changing its
format to one that is not obsolete at the time of use. Emulation keeps the original
digital object but changes the rendering environment, by modifying the applica-
tion used to render the object, or replacing the original hardware by introducing
a virtual layer, using the original software-stack for rendering. It is necessary to
evaluate that the result of the digital preservation action produces a rendering
that is similar to the original in its “significant properties”, i.e., the properties
of the object deemed important for future use by the designated community. For
migration, the significant properties of the object extracted from the original
and migrated form are compared. With emulation, one has to compare the ren-
dering of the digital object in the two environments. Traditionally DP research
concentrated on objects that behave deterministic, i.e., are rendered similarly
on the same system during each rendering, such as text-documents, videos, im-
ages, or database content. Objects that are rendered non-deterministic change
their rendering depending on user input, hardware values, or random values,
e.g. digital art or computer games. The preservation and curation of scientific
data is important to ensure reuse and long-term usability of data that has been
the basis to scientific experiments. Data, however, does also require information
about its context and the processes involved in its creation and usage, e.g., the
setting where it was created or interpreted. It may be impossible to recreate the
original experiment, and thus a preserved process that allows to reproduce and
trace how results and analysis were obtained is important. eScience processes are
depending on specific software or hardware, thus facing digital obsolescence. To

2 Rudolf Mayer, Mark Guttenbrunner, and Andreas Rauber

preserve a process, one needs to go beyond capturing single files and metadata,
up to including complete computer systems. From a high level perspective, or-
ganisational parameters need to be described, down to the technical description
of the systems the process depends on, including hardware, software, and third-
party services. To describe these, a context model identifying relevant aspects of
a process has been created [2].

2 Preservation Actions for Processes and Evaluation

The preservation of a process will in most cases be a mixture of currently avail-
able techniques. Documentation relevant to the understanding of the process
and technical environment can be migrated to different formats. Also data and
documents used within or in the transition between process steps need to be
preserved. They can both be interpreted by humans, or machines, which has
an impact on the significant properties. For software systems forming the ex-
ecution environment supporting the process, emulation of both hardware and
software (especially operating systems) is a viable option. Virtualisation can aid
to abstract the system from the physical hardware. Migration of the software
supporting the process to another environment is a viable option, e.g. by mi-
gration to a different programming language supported in the new environment,
or cross-compilation to a different platform. One strategy for external systems
employed, such as web services, is in contractual agreements, which will obli-
gate the providers to perform preservation efforts themselves. When that is not
possible, an external system has to be replaced by a system controlled by the
process owner. This can be a re-implementation (migration) of the system, or
simply a simulation of the behaviour of the system, e.g. by recording and replay-
ing messages previously exchanged. Of course, this is not a valid strategy for
non-deterministic services, e.g. for which the output depends also on the time of
invocation (and thus a state). In all cases, it is important to evaluate that the
preserved process is still equivalent to the originally executed process.

A framework to determine the effects of an emulated environment on the
rendering of objects is presented in [1]. It suggests methods to automate the
evaluation, and methods to automate input to ensure that changes in manual
handling of the digital object can be ruled out as a cause for changes. To apply
this framework to the evaluation of processes we have to take the following steps:
(1) Description of the original environment, using the context model.

(2) External events Typical events that will influence the behaviour of a pro-
cess are external data used as input to the process, either manually supplied
by a user, or data that is read from sources connected to the system, e.g., web
services, or sensors. To enable evaluation, we have to record the data supplied
to the process so that it can be reapplied on a re-run. As not every possible
combination of data can be evaluated, significant test cases are defined.

(3) Level to compare Depending on the process and the type of “output” it cre-
ates, we have to decide where to capture the rendered data (cf. Figure 1(a)). For
an automatically running process that does not produce any rendered screens

Evaluation of Preserved Scientific Processes 3

Workilow input ports’

rendered form on output device.
(e.g. on monitor, hard disc, speakers,
netw

rendered form on output device
(e.9- on monitor, hard disc, speakers,
twork, actuators)

P

rendered form on the output interface | rendered form on the output interface I

[wsonc]f] A

(output of GFX-card, sound card, (output of GFX-card, sound card ,
network card, control port) network card, control port)

processing
hardware

rendered form in host system memory
(e.g. in host video memory)
—

rendered form in emulator-memory (e.g.
in allocated host memory region)

(e.g. in video memory, sound chip, External : 1

network buffer) Process Output Ports

P vever N
application

| rendered form in memory |

descriptive form descriptive form
| (e.g. as stored in file) | | (e.g. as stored in file) | petaitedci e '\4
(a) Forms of a digital object in the orig- (b) Scientific workflow modeled in the
inal and emulated system’s memory Taverna Workflow engine

for users we can compare on the interface where the output is provided, e.g. a
file. If user output is created and that triggers a response from the user, then
extraction from the video memory e.g. in the form of a screenshot is necessary.
(4) Recreating the environment A typical recreation of a process would happen
either in a virtualised or a fully emulated environment. Alternatively the process
could also be executed in a different process execution engine.

(5) Standardised input External data that has been captured during the test
case-recordings of the rendering of the process has to be provided to the new
rendering of the process, to ensure a deterministic rendering.

(6) Extracting data During the execution of a process intermediary data is gen-
erated, handed between different steps of the process and discarded afterwards.
From an evaluation point of view we are interested in all data that is provided
outside of the system. We thus identify these “Significant States” in the process
and at these extract both in the original rendering and the emulated version.
If the original process is executed in a workflow engine, i.e. an application that
orchestrates processes, the single processing steps are well defined and allow for
capturing the data exchanged. For other processes, a viable strategy is to move
the execution environment into a virtual machine environment, which enables
capturing data from the interface between the virtual machine and the host sys-
tem. Capturing data in the original environment is also possible to some extent.
(7) Comparing data The data extracted during the run of the process in the orig-
inal environment is compared to the data extracted from the re-run. Using the
same input data for a process the assumption is that the process behaves similar
to the original rendering, producing the same results if we extract the data in the
same significant states of the process. Otherwise, a difference in the rendering
environment is likely the reason for the failed verification of the process.

3 Case Study — A Music Classification Experiment

We test our method on a scientific experiment where the researcher performs
an evaluation of an algorithm for automatic classification of music into a set of

4 Rudolf Mayer, Mark Guttenbrunner, and Andreas Rauber

predefined categories, which is a standard scenario in music information retrieval
research, and is used for numerous evaluation settings, ranging from ad-hoc
experiments to benchmark evaluations. An implementation of the process is
shown in Figure 1(b), a detailed description and context model thereof can be
found in [2]. In the experiment, music data is acquired from external sources
(e.g. online content providers), and genre assignments for the pieces of music
from ground truth registries. Features describing characteristics of the audio
files are extracted using an external web service. The service needs the input in
MP3 format, Base64 encoded to allow for a data exchange via XML. The service
returns an ASCII file, that after conversion from SOMLib to ARFF format forms
the basis for learning a machine learning model. The numeric metric “accuracy”
and a detailed description are the output.

Of particular interest for evaluation are those steps where the process com-
municates with the system it is embedded in, i.e., all the steps where external
data influences the rendering of the process, or where data is provided to exter-
nal interfaces. To create a deterministic rendering we need to make sure that for
every evaluation cycle the same data influencing the process is provided. In the
music classification process there are several process steps that have a connection
to an external service, annotated in Figure 1(b). As such, fetchMP3FileListing,
fetchGroundTruth and fetchMP3 get data from an external web server. Com-
munication with the web service includes the music files as well as parameters
controlling the extraction. The process in turn receives as input the extracted
features. Finally, there are two end results where data is provided by the process.

To enable evaluation of the workflow results we need to provide either a con-
nection to the original external web server, or create a simulation of the service.
Capturing the data on the output ports of the process lets us then compare dif-
ferent cycles of the same process steps with the same data. If the captured data
is identical even if the rendering environment has been changed, we have a strong
indication that the process is executed correctly in the new environment. If the
captured data is different, even if the process has been executed with the exact
same input parameters, then the rendering environment changes the execution of
the process and thus can not be considered a proper preservation of the process.
Also internal intermediary results after each step can be compared, to check how
far in the process the results are unchanged. Differences can be introduced by
internal dependencies, e.g., due to differences in versions of libraries, or different
versions of the Java Virtual Machine. Comparing intermediary results can thus
help us identify differences in the rendering environment leading to changes in
the result of the process.

References

1. M. Guttenbrunner and A. Rauber. A measurement framework for evaluating emu-
lators for digital preservation. ACM Trans. on Information Systems, 30(2), 2012.

2. R. Mayer, A. Rauber, M. A. Neumann, J. Thomson, and G. Antunes. Preserving
scientific processes from design to publication. In Proc. of the 15th Int. Conf. on
Theory and Practice of Digital Libraries, Cyprus, September 23—29 2012. Springer.

