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ABSTRACT
We evaluate the impact of feature selection on the classifi-
cation accuracy and the achieved dimensionality reduction,
which benefits the time needed on training classification
models. Our classification scheme therein is a Cartesian en-
semble classification system, based on the principle of late
fusion and feature subspaces. These feature subspaces de-
scribe different aspects of the same data set. We use it for
the ensemble classification of multiple feature sets from the
audio and symbolic domains. We present an extensive set
of experiments in the context of music genre classification,
based on Music IR benchmark datasets. We show that while
feature selection does not benefit classification accuracy, it
greatly reduces the dimensionality of each feature subspace,
and thus adds to great gains in the time needed to train the
individual classification models that form the ensemble.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [retrieval
models, search process, selection process]

General Terms
Algorithms, Measurement, Experimentation, Performance

Keywords
Musical genre classification, ensemble classification, feature
selection, feature reduction

1. INTRODUCTION
Classification of music into different categories is an im-

portant task for retrieval and organisation of music libraries.
Previous studies reported a glass ceiling reached using tim-
bral audio features for music classification [1]. We recently
presented an approach that is based on the assumption that
a diversity of music descriptors and machine learning al-
gorithms are able to make further improvements [8]. We
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Figure 1: Architecture of the cartesian ensemble

therein created a Cartesian ensemble system with these two
dimensions (feature sets, learning schemes) as input and
train models for each combination of those two input di-
mensions. In a set of experiments on datasets widely used
for musical genre classification, we showed the usefulness of
this ensemble approach, in terms of a higher classification
accuracy achieved. We further demonstrated that, with the
ensemble approach, the user is liberated from the task of
a-priori selecting the best set of feature subspaces, and the
best classification algorithm.

While this approach is shown to successfully reducing the
need for (expert) user choices, and yields better classifica-
tion, the time needed to train the classification models in-
creases significantly, as when compared with just one single
classifier on a single feature set. Therefore, in this paper
we evaluate the effect of feature selection in our ensemble
approach. We want to investigate whether feature selection
can be utilised to achieve the same, or at most a slightly
worse classification accuracy than with full feature sets, but
at the same time whether the feature reduction effect can
help to reduce the time needed for training the ensemble.

Section 2 gives a brief overview on related work in the area
of ensemble learning. Section 3 introduces our ensemble
system In Section 4, we evaluate the system on the task
of musical genre classification, Finally, Section 5 provides
conclusions and an outlook on future work.

2. RELATED WORK
The Autonomous Classification Engine ACE [11] is a gen-



Table 1: Summary of weighted combination rules
SWV Simple Weighted Vote
RSWV Rescaled Simple Weighted Vote
BWWV Best-Worst Weighted Vote
QBWWV Quadratic Best-Worst Weighted Vote
WMV Weighted Majority Vote

eral framework for model selection, i.e. the task of select-
ing one classification model from a pool of models. ACE
trains a range of classifiers, with different parameters and
feature selection methods, and selects the most fitting ones
for the current task. The combination of different segments
extracted from the same song is studied in [2]. The approach
is based on grouping and aggregating non-overlapping blocks
of consecutive frames into segments. The segments are then
classified individually and the results are aggregated for a
song by majority voting. Three different ensemble methods
and their applicability to music are investigated in [4]: (1)
based on a one against all scheme, i.e. for each class, a clas-
sifier is trained on the class and its complement, (2) based on
building a classifier for each pairwise combination of classes,
and (3) by training different classifiers on different feature
subspaces. In all methods, the final class label is determined
by the probabilities of the individual classifiers.

Our original motivation has been to combine multiple ap-
proaches from the music information retrieval (MIR) domain
in order to improve (the reliability of) genre classification
results based on the assumption that the various music de-
scriptors are complementary. This has been shown by com-
bining different features extracted from the audio signal,
namely spectrum-based audio features that cover timbral
and rhythmic aspects of the sound, with symbolic descrip-
tors, based on note and chord sequence statistics [9]. A sim-
ilar multi-modal approach was taken in [10], where the au-
dio features were combined with descriptors extracted from
the textual content of the lyrics of the songs. Both stud-
ies report gains in genre classification accuracy when simply
concatenating the descriptors, i.e. feature fusion.

3. CARTESIAN ENSEMBLE SYSTEM
The system depicted in Figure 1 was first introduced in

[8], and builds on late fusion. It is called a Cartesian ensem-
ble since the set of models it uses as base classifiers is the
cartesian product of D feature subspaces by C classification
schemes (a specific algorithm with specific algorithm param-
eters, if any). Each model is built by training classification
scheme ci on feature subspace dj .

The primary aim is to obtain a diverse ensemble of models
that will, up to a certain degree, guarantee an improvement
of the ensemble accuracy over the best single model trained.
Secondly, the ensemble liberates the analyst from the need
to select a particular combination of classification scheme
and feature subspace to use. A constraint for the system
is that the ensemble has to provide results that are at least
comparable to the best single scheme. Experimental evalu-
ation has shown that this constraint can be fulfilled.

Pareto-optimal Classifier Selection. Model diversity is
a key design factor for building effective classifier ensem-
bles [7]. This has been empirically shown to improve the
accuracy of an ensemble over its base models.

For selecting the most diverse models within the ensemble,

Figure 2: Inner and outer cross-validation scheme.

the Pareto-optimal selection strategy is applied in order to
discard models not diverse or not accurate enough. The
strategy is based on finding the Pareto-optimal set of models
by rating them in pairs, according to two measures [7]. The
first one is the inter-rater agreement diversity measure
κ, defined on the coincidence matrix M of the two models.
The matrix element mr,s is the proportion of the dataset,
which model hi labels as Lr and model hj labels as Ls. The
second is the pair average error. The Pareto-optimal set
contains all non-dominated pairs. A pair of classifiers is non-
dominated iff there is no other pair that is better than it on
both criteria.

Combination Rules. When a new music instance is pre-
sented to the ensemble, predictions are made by each of the
models. They are then combined, to produce a single cat-
egory prediction. A number of decision combination rules
can be used for this final prediction. Our system provides
both weighted and unweighted voting rules.

Unweighted rules, described e.g. in [6], include e.g.
simple majority voting (MAJ), which favours the class pre-
dicted by most votes, or combine the individual results by
the average (AVG), median (MED) or max (MAX) of the
posterior probability P (Lk|xi) of instance x to belong to
category Lk, as provided by model hi.

Weighted rules multiply model decisions by weights and
select the label Lk that gets the maximum score. Model
weights are based on the estimated accuracy αi of trained
models. The authority ai of each model hi is established
as a function of αi, normalised, and used as its weight ωi.
Table 1 gives an overview on the weighted rules used in our
system. WMV is a theoretically optimal weighted vote rule
described in [7], where model weights are set proportionally
to log(αi/(1−αi)). For more details, especially on the weight
functions, please refer to [12, 8].

Inner/Outer Cross Validation. Cross validation is a well-
known technique for assessing how the results from a classi-
fier will generalize on independent data. To reduce variabil-
ity, multiple rounds of partitioning the data in a training
and validation (or test) are performed. For weighted com-
bination rules, we also need to estimate the accuracy of in-
dividual ensemble models (αi). In order to avoid using test
data of the ensemble for single model accuracy estimation,
an inner cross-validation relying only on ensemble training
data is performed, as depicted in Figure 2.

3.1 Feature selection
In this work a feature selection stage was added to the

system presented in [8]. The feature selection method used is
a fast correlation-based filter (FCBF) described in [16]. It is
a feature search method that uses a symmetrical uncertainty
(SU) correlation-based measure to evaluate features. This
measure indicates how much of a feature can be predicted
given the information in another feature. The method finds



Table 2: Datasets used in experiments
Dataset files genres file length ref.
9GDB 856 9 full [13]
GTZAN 1000 10 30 sec [15]
ISMIRgenre 1458 6 full [5]
ISMIRrhythm 698 8 30 sec [5]

a set of predominant features in two steps. First, relevant
features are ranked according to their SU value with respect
to the class (SUc). A threshold δ on SU can be established
to discard features relevant not enough. In the second step,
redundant features are further discarded. A feature Fq with
rank q is considered redundant if its SU with respect to
any feature Fp such that p < q is greater than its SUc.
FCBF has been shown to efficiently achieve high degree of
dimensionality reduction for high-dimensional data, while
enhancing or maintaining predictive accuracy with selected
features.

4. EVALUATION
An overview on the dataset used is given in Table 2; either

full songs or 30 second excerpts were available.

4.1 Music Descriptors
We use two sources of input to our ensemble music clas-

sification approach: audio features extracted from the wave-
form, and symbolic descriptors derived from MIDI files, which
are obtained through a transcription system. We employ
features that proved well in our previous works [3, 9, 8].
However, arbitrary feature sets can be used. The number of
features in each subspace is shown in Table 3.

Audio Features. All audio descriptors are extracted from a
spectral representation of the audio signal, partitioned into
segments. Features are extracted segment-wise, and then
aggregated for a piece of music using the median or mean.

The computation of Rhythm Patterns is composed of
two stages. First, the specific loudness sensation on the
24 critical frequency bands of the Bark scale is computed,
resulting in a psycho-acoustical representation reflecting hu-
man loudness sensation. Secondly, a spectrum of loudness
amplitude modulation per modulation frequency for the bands
is computed [9].

A Rhythm Histogram (RH) aggregates the modulation
amplitude values of the critical bands computed in a Rhythm
Pattern and is a descriptor for general rhythmic character-
istics in a piece of audio [9]. Statistical Spectrum De-
scriptors (SSD) compute, at the end of the first stage of
RPs, a set of statistical values for each critical band, cap-
turing both timbral and rhythmic information very well [9].
Modulation Frequency Variance Descriptors (MVD)
measure variations in the critical bands for a specific mod-
ulation frequency of the Rhythm Pattern matrix, by taking
statistics for each modulation frequency over the bands [8].

To incorporate time series aspects, we introduced TRH
and TSSD features, describing variations over time in RH
and SSD descriptors, resp. TRH thus captures change and
variation of rhythmic aspects in time, and TSSD reflects a
change of rhythmics, instruments, voices, etc. over SSD [8].

Symbolic Features. Each audio sample is transcribed to a
polyphonic stream of notes in MIDI format by means of the
algorithm described in [14]. A set of statistical descriptors

is then extracted from transcribed notes as in [3]. Note
pitches, pitch intervals, note durations, silence durations,
Inter Onset Intervals (IOI) and non-diatonic notes are de-
scribed by min/max values, range, average, standard devia-
tion, and a normality distribution estimator. Other features
include overall statistics such as the average number of notes
per beat, or the number of syncopations in the song.

Most of these features are somewhat ’melody-oriented’
(e.g. interval-based features). In order to capture relevant
information about the polyphonic structure, a distribution
of common chord types is computed.

4.2 Classification Schemes and Parameters
For our experiments, we set the system to perform 10-fold

outer cross-validation and 3-fold inner cross-validation, and
build all subspace models. As for the classification schemes,
a selection of classifiers from the Weka toolkit has been
made, aiming at choosing schemes from different machine
learning paradigms, as done in [8].

4.3 Feature selection
Feature selection is performed independently for each sub-

space at each fold, using outer training data. Table 4 presents
a summary of the best single model classification results.
The fourth column shows the average number of features
selected per fold, also as a percentage of the whole feature
subspace. The right section of the table shows performance
results without feature selection. This comparison suggests
that SVM classifiers’ performance on these datasets deteri-
orates more than schemes based on decision trees.

Table 3 provides further insight on the feature selection
step on the GTZAN corpus. These results are averaged
over cross-validation folds. The third column shows that
the greatest dimensionality reduction is obtained for large
audio feature subspaces. The fourth column indicates how
many features have been selected at least once. It is worth
noting that for the larger subspace, only 3.4% of the fea-
tures have been selected once. The next column shows how
many features are always selected. Here, the SSD subspace
shows the best ratio of very predominant features. The ac-
curacy column indicates average accuracy for the best single
model trained. The Random Forest scheme shows best per-
formance most of the time.

Feature selection times are negligible when compared to
training times, as shown in Table 5. Moreover, training
and testing times are an order of magnitude lower than
those obtained using the ensemble with all features avail-
able. Though, in general, the accuracy of single models de-
creases when applying a feature selection step, it remains
reasonably good for most of the benchmarking corpus.

Table 5: Ensemble cross-validation execution times
(in seconds) with and without feature selection (test
times are averaged over combinations methods).

all features with feature selection
Corpus train test train feat. sel. test
9GDB 6645 140 905 93 18
GTZAN 10702 345 1247 96 23
ISMIRgenre 12510 275 1244 133 23
ISMIRrhythm 5466 185 707 60 8



Table 3: Feature selection results for the GTZAN corpus.
Feature subspace # feats. avg. selected at least once always best acc (%)
RH 60 2 (3.3%) 7 (11.7%) 0 27.5 (NB)
RP 1440 9.1 (0.6%) 49 (3.4%) 1 41.2 (RF)
SSD 168 7.4 (4.4%) 15 (8.9%) 4 49.3 (RF)
TRH 420 2 (0.5%) 7 (1.7%) 0 28.1 (NB)
TSSD 1176 19.1 (1.6%) 71 (6%) 4 53.1 (RF)
MVD 420 4.6 (1.1%) 22 (5.2%) 1 31 (RF)
SYMB 63 7.3 (11.8%) 14 (22.6%) 3 44.2 (SVM-quad)

Table 4: Best results on single subspace/classifier combinations on different datasets
Dataset Classifier Subspace avg. feat. sel. Acc. (%) Acc. (%) all feat. Best Acc. all feat.
9GDB RandomForest TSSD 42.6 (3.6%) 73.2 76.5 78.2 (SVM-Puk/TSSD)
GTZAN RandomForest TSSD 19.1 (1.6%) 53.1 58.2 72.6 (SVM-lin/SSD)
ISMIRgenre RandomForest TSSD 20.5 (1.7%) 72.4 73.2 81.3 (SVM-quad/TSSD)
ISMIRrhythm SVM-lin RP 38.0 (2.6%) 81.6 88.0 88.0 (SVM-lin/RP)

Table 6: Results of the ensemble classification
ISMIR ISMIR

Rule 9GDB GTZAN genre rhythm
Single best 73.2 53.1 72.4 81.6
MAJ 71.38 61 55.83 81.09
MAX 63.9 45.9 67.97 59.46
MED 64.72 42.8 54.39 66.19
AVG 80.02 65.2 70.23 83.52
SWV 77.69 61.7 56.1 82.95
RSWV 78.27 62 57.96 83.81
BWWV 78.97 61.8 67.08 83.67
QBWWV 79.67 60.7 71.81 84.53
WMV 77.92 53.2 72.43 84.24
Best wo/ FS 81.66 77.50 84.02 89.11

5. CONCLUSIONS
We presented a classification system based on an ensem-

ble models built on feature subspaces that describe different
aspects of a given corpus. the system integrates a feature
selection stage, aimed at speeding up training and testing
phases, while maintaining a good accuracy level on the task
of music genre classification. Our concern in this work was
to integrate a feature selection step in the cartesian ensemble
and evaluate its impact on the ensemble performance on sev-
eral datasets. The size of feature subspaces has been greatly
reduced to less than 4% of their original size, on average.
This has been achieved while maintaining the classification
accuracy at a reasonable good level at least for two of the
benchmarking corpora, 9GDB and ISMIRrhythm, as shown
in Table 6.
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