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Multimodal Aspects of Music Retrieval:
Audio, Song Lyrics – and beyond?

Rudolf Mayer and Andreas Rauber

Abstract Music retrieval is predominantly seen as a problem to be tackled in the
acoustic domain. With the exception of symbolic music retrieval and score-based
systems, which form rather separate sub-disciplines on their own, most approaches
to retrieve recordings of music by content rely on different features extracted from
the audio signal. Music is subsequently retrieved by similarity matching, or classi-
fied into genre, instrumentation, artist or other categories. Yet, music is an inherently
multimodal type of data. Apart from purely instrumental pieces, the lyrics associ-
ated with the music are as essential to the reception and the message of a song as
is the audio. Album covers are carefully designed by artists to convey a message
that is consistent with the message sent by the music on the album as well as by the
image of a band in general. Music videos, fan sites and other sources of information
add to that in a usually coherent manner. This paper takes a look at recent develop-
ments in multimodal analysis of music. It discusses different types of information
sources available, stressing the multimodal character of music. It then reviews some
features that may be extracted from those sources, focussing particularly on audio
and lyrics as sources of information. Experimental results on different collections
and categorisation tasks will round off the chapter. It shows the merits and open
issues to be addressed to fully benefit from the rich and complex information space
that music creates.

Rudolf Mayer
Institute of Software Technology and Interactive Systems, Vienna University of Technology
e-mail: mayer@ifs.tuwien.ac.at

Andreas Rauber
Institute of Software Technology and Interactive Systems, Vienna University of Technology
e-mail: rauber@ifs.tuwien.ac.at

3

https://orcid.org/0000-0003-0424-5999
https://orcid.org/0000-0003-0424-5999
mayer@ifs.tuwien.ac.at
rauber@ifs.tuwien.ac.at


4 Rudolf Mayer and Andreas Rauber

1 Introduction

Multimedia data by definition incorporates multiple types of content. However, of-
ten a strong focus is put on one view only, disregarding many other opportunities
and exploitable modalities. In the same way as video, for instance, incorporates vi-
sual, auditory, and text info (in the case of subtitles or extra information about the
current programme via TV text and other channels), music data itself is not limited
solely to its sound. Yet, a strong focus is put on audio based feature sets throughout
the music information retrieval community, as music perception itself is based on
sonic characteristics to a large extent. For many people, acoustic content is the main
property of a song and makes it possible to differentiate between acoustic styles.
For many examples or even genres this is true, for instance ‘Hip-Hop’ or ‘Techno’
music being dominated by a strong bass. Specific instruments very often define dif-
ferent types of music – once a track contains trumpet sounds it will most likely be
assigned to genres like ‘Jazz’, traditional Austrian/German ‘Blasmusik’, ‘Classical’,
or ‘Christmas’.

However, a great deal of information is to be found in extra information in the
form of text documents, be it about artists, albums, or song lyrics. Many musical
genres are rather defined by the topics they deal with than a typical sound. ‘Christ-
mas’ songs, for instance, are spread over a whole range of musical genres. Many
traditional ‘Christmas’ songs were interpreted by modern artists and are heavily in-
fluenced by their style; ‘Punk Rock’ variations are recorded as well as ‘Hip-Hop’
or ‘Rap’ versions. What all of these share, though, is a common set of topics to be
sung about. Another example is ‘Christian Rock’, which has a sound indistinguish-
able from other Rock music, but has highly religious topics (the same holds true for
‘Christian Hip-Hop’). These simple examples show that there is a whole level of se-
mantics inherent in song lyrics, that can not be detected by audio based techniques
alone.

We assume that a song’s text content can help in better understanding its mean-
ing. In addition to the mere textual content, song lyrics exhibit a certain structure,
as they are organised in blocks of choruses and verses. Many songs are organised in
rhymes, patterns which are reflected in a song’s lyrics and easier to detect from text
than audio. Whether or not rhyming structures occur at all, and the level of com-
plexity of the patterns used, may be highly characteristic for certain genres. In some
cases, for example when thinking about very ‘ear-catching’ songs, maybe even the
simplicity of rhyme structures are the common denominator.

For similar reasons, musical similarity can also be defined on textual analysis
of certain parts-of-speech (POS) characteristics. Quiet or slow songs could, for in-
stance, be discovered by rather descriptive language which is dominated by nouns
and adjectives, whereas we assume a high number of verbs to express the nature
of lively songs. In this paper, we further show the influence of so called text statis-
tic features on song similarity. We employ a range of simple statistics such as the
average word or line lengths as descriptors. Analogously to the common beats-
per-minute (BPM) descriptor in audio analysis, we introduce the words-per-minute
(WPM) measure to identify similar songs. The rationale behind WPM is that it can
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capture the ‘density’ of a song and its rhythmic sound in terms of similarity in audio
and lyrics characteristics.

We therefore stress the importance of taking into account several of the afore-
mentioned properties of music by means of a combinational approach. We want to
point out that there is much to be gained from such a combinational approach as
single genres may be best described in different feature sets. Musical genre clas-
sification therefore is heavily influenced by these modalities and can yield better
overall results. We show the applicability of our approach with a detailed analysis
of both the distribution of text and audio features, and genre classification on two test
collections. One of our test collections consists of manually selected and cleansed
songs subsampled from a real-world collection. We further use a larger collection
which again is subsampled, but not manually cleansed, to show the stability of our
approach.

This remainder of this paper is structured as follows. We start by giving an
overview on related work in Section 2. We then give a detailed description of our
approach and the feature sets we use for analysing song lyrics and audio tracks alike
in Section 3. In Section 4 we apply our techniques to several audio corpora. We
provide a summary of previous as well as novel results for the musical genre clas-
sification task, and a wide range of experimental settings. Finally, we analyse our
results, conclude, and give a short outlook on future research in Section 5.

2 Related Work

Music information retrieval is a discipline of information retrieval, concerned with
adequately accessing (digital) audio. Its major research topics include, but are not
limited to, musical genre classification (and classification into other types of cat-
egories, such as mood or situations), similarity retrieval, or music analysis and
knowledge representation. Comprehensive overviews of music information retrieval
research are given in [8, 27].

The still dominant method of processing audio files in music information re-
trieval is by analysis of the audio signal, which is computed from plain wave files
or via a preceding decoding step from other wide-spread audio formats such as
MP3 or the (lossless) FLAC format. A wealth of different descriptive features for
the abstract representation of audio content have been presented. Early overviews
on content-based music information retrieval and experiments are given in [10] and
[37, 39], focussing mainly on automatic genre classification of music.

Mel-Frequency Cepstral Coefficients (MFCC) [32] are a perceptually motivated
set of features developed in context of speech recognition. The Mel scale, which
is a perceptual scale found empirically through human listening tests, and models
perceived pitch distances, is applied to the logarithmic spectrum before applying a
discrete cosine transform (or an inverse Fourier transform) to obtain the MFCCs.
An investigation about their adoption in the MIR domain was presented in [19].
Content-based audio retrieval based on K-Means clustering of MFCC features is
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performed in [21]. A comparison of MFCC and MPEG-7 features on sports audio
classification is presented in [40].

Daubechies Wavelet Coefficient Histograms as a feature set suitable for music
genre classification are proposed in [16]. The feature set characterises amplitude
variations in the audio signal.

Chroma features [11] extract the harmonic content (e.g, keys, chords) of music
by computing the spectral energy present at frequencies that correspond to each of
the 12 notes in a standard chromatic scale.

The MARSYAS system [37], besides new graphical user interfaces for browsing
and interacting with audio signals, introduces a number of new algorithms for audio
description: a general multifeature audio texture segmentation methodology, feature
extraction from MP3 compressed data, beat detection based on the discrete Wavelet
transform and musical genre classification combining timbral, rhythmic and har-
monic features.

The Moving Picture Experts Group (MPEG) released the MPEG-7 standard,
which defines the Multimedia Content Description Interface, and is a standard for
description and search of audio and visual content. Part 4 of said standard describes
17 low-level audio temporal and spectral descriptors, divided into seven classes,
including silence. Some of the features are based on basic wave-form or spectral
information, while others use harmonic or timbral information. In [1] these features
are used for audio fingerprinting, i.e. using signatures based on various properties of
audio signal for the robust identification of audio material. A classification approach
with MPEG-7 features is done in [6].

Rhythm Patterns [34, 29] are a set of audio features which model modulation
amplitudes on critical frequency bands. To this end, they consider and employ a
set of psycho-acoustic models. Two other feature sets have been derived from and
are based on different parts of the computation of the Rhythm patterns, namely the
Rhythm Histograms and Statistical Spectrum Descriptors [17] feature sets.

In this paper, the MFCC, Marsyas, Chroma, Rhythm Patterns, Rhythm His-
tograms and Statistics Spectrum Descriptors are combined with and compared to
our set of lyrics features. Therefore, these audio feature sets will be described in
more detail in Section 3.1.

Several research teams have further begun working on adding textual information
to the retrieval process, predominantly in the form of song lyrics and an abstract vec-
tor representation of the term information contained in text documents. A semantic
and structural analysis of song lyrics is conducted in [22]. It focuses on aspects such
as structure detection, e.g. verses and chorus, classification into thematic categories
such as ‘love’, ‘violent’, ‘christian’, and similarity search. The correlation between
artist similarity and song lyrics is studied in [20]. It is pointed out that acoustic sim-
ilarity is superior to textual similarity, yet a combination of both approaches might
lead to better results. A promising approach targeted at large-scale recommendation
engines is presented in [14]. Lyrics are gathered from multiple sources on the Web,
and are subsequently aligned to each other for matching sequences, to filter out er-
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rors like typing errors, or retrieved parts not actually belonging to the lyrics of the
song, such as commercials.

Also, the analysis of karaoke music is an interesting new research area. A multi-
modal lyrics extraction technique for tracking and extracting karaoke text from
video frames is presented in [42]. Some effort has also been spent on the automatic
synchronisation of lyrics and audio tracks at a syllabic level [12]. A multi-modal
approach to query music, text, and images with a special focus on album covers is
presented in [4]. Other cultural data is included in the retrieval process e.g. in the
form of textual artist or album reviews [3]. Cultural data is also used to provide a
hierarchical organisation of music collections on the artist level in [28]. The system
describes artists by terms gathered from web search engine results.

Another area were lyrics have also been employed is the field of emotion de-
tection and classification, for example [41], which aims at disambiguating music
emotion with lyrics and social context features. More recent work combined both
audio and lyrics-based feature for mood classification [15].

In [13], additional information like web data and album covers are used for la-
belling, showing the feasibility of exploiting a range of modalities in music informa-
tion retrieval. A three-dimensional musical landscape via a Self-Organising Maps
(SOMs) is created and applied to small private music collections. Users can then
navigate through the map by using a video game pad. An application of visual-
isation techniques for lyrics and audio content based on employing two separate
SOMs is given in [26]. It demonstrates the potential of lyrics analysis for clustering
collections of digital audio. The similarity of songs is visualised according to both
modalities, and a quality measures with respect to the differences in distributions
across the two maps is computed, in order to identify interesting genres and artists.

Experiments on the concatenation of audio and bag-of-words features were re-
ported in [25]. The results showed potential for dimensionality reduction when using
different types of features.

First results for genre classification using the rhyme and style features used later
in this paper are reported in [24]; these results particularly showed that simple lyrics
features may well be worthwile. This approach has further been extended on two
bigger test collections, and to combining and comparing the lyrics features with
audio features in [23].

3 Employed Feature Sets

Figure 1 shows an overview of the processing architecture. We start from plain audio
files. The preprocessing/enrichment step involves decoding of audio files to plain
wave format as well as lyrics fetching. We then apply the audio and lyrics-based
feature extraction described in the following subsections. Finally, the results of both
feature extraction processes are used for musical genre classification.
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Fig. 1 Processing architecture for combined audio and lyrics analysis stretching from a set of plain
audio files to combined genre classification

3.1 Audio Features

In our study, we employ several different sets of features extracted from the au-
dio content of the songs, to compare them to and combine them with our newly
designed set of features based on the song lyrics. To give comprehensive evidence
that our feature set can improve classification results of audio-only feature sets, we
extended the experiments presented in [23], which made use of the Rhythm Pat-
terns, Statistical Spectrum Descriptors, and Rhythm Histograms audio feature sets.
To those, we add analysis of the combination of the lyrics-based features with other
popular and widely used feature sets, namely the Mel Frequency Cepstral Coeffi-
cients (MFCCs), MARSYAS and Chroma features. All these feature sets will be
described below.

3.1.1 MFCC Features

Mel Frequency Cepstral Coefficients (MFCCs) originated in research for speech
processing [32], and soon gained popularity in the field of music information re-
trieval [19]. A cepstrum is defined as the Discrete Cosine Transform (DCT) or in-
verse Fourier transform of the logarithm of the spectrum. If the Mel scale is applied
to the logarithmic spectrum before applying the DCT (or inverse Fourier trans-
form), the result is called Mel Frequency Cepstral Coefficients. The Mel scale is
a perceptual scale that models perceived pitch distances, and was found empirically
through human listening tests. With increasing frequency, the intervals in Hz pro-
ducing equal increments in perceived pitch are getting larger and larger. Thus, the
Mel scale is approximately a logarithmic scale; it corresponds more closely to the
human auditory system than the linearly spaced frequency bands of a spectrum.
A related scale is e.g. the Bark Scale, used in the Rhythm Patterns features (c.f.
Section 3.1.4). From the MFCCs, commonly only the first few (for instance 5 to
20) Coefficients are used as features. In this work, we use the MFCC features ex-
tracted by the MARSYAS system, which provides four statistical values (means and
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variances over a texture window of one second) for the first 13 coefficients, thus
resulting in 52 dimensions.

3.1.2 MARSYAS Features

The MARSYAS system [37] is a software framework for audio analysis and pro-
vides a number of feature extractors, all of which compute statistics over a texture
window of approximately one second.

The Short-Time Fourier Transform (STFT) Spectrum based Features provide
standard temporal and spectral low-level features, such as Spectral Centroid, Spec-
tral Rolloff, Spectral Flux, Root Mean Square (RMS) energy and Zero Crossings.

A set of MPEG Compression based features is extracted directly from MPEG
compressed audio data (e.g. from mp3 files) [38]. This approach utilises the fact that
MPEG compression already performs a lot of analysis in the encoding stage, includ-
ing a time-frequency analysis. The spectrum is divided into 32 sub-bands of equal
size, via an analysis filterbank, wherefrom features such as the centroid, rolloff,
spectral flux and RMS are directly computed from. Note that these features are not
equal to the MPEG-7 standard features.

The Wavelet Transform is an alternative to the Fourier Transform, overcoming
the trade-off between time and frequency resolution. It provides low frequency res-
olution and high time resolution for high frequency ranges, while in low frequency
ranges, it provides high frequency and lower time resolution. This is a closer repre-
sentation of the human perception of a sound. A set of features is extracted by com-
puting the mean absolute values and standard deviation of the coefficients in each
frequency band, and ratios of the mean absolute values between adjacent bands.
The features represent ‘sound texture’ and provide information about the frequency
distribution of the signal and its evolution over time.

For the Beat Histogram computation, a Discrete Wavelet Transform, which de-
composes the signal into octave frequency bands, is applied before a time-domain
amplitude envelope extraction and periodicity detection. The time domain ampli-
tude envelope are extracted separately for each band. The sum of the normalised
envelopes is then processed through an autocorrelation function to detect the domi-
nant periodicities of the signal. The amplitude values of the dominant peaks are then
accumulated over the whole song into the Beat Histogram, which not only captures
the dominant beat in a sound, but more detailed information about the rhythmic con-
tent of a piece of music. The relative amplitude (of the sum of amplitudes) of the
first and second peak, the ratio of the amplitude of the second to the first peak, the
period of the first and second beat (in beats per minute), and the overall sum of the
histogram, as indication of beat strength, are computed as features.

The Pitch Histogram feature computation decomposes the signal into two fre-
quency bands (below and above 1000 Hz). For each band, amplitude envelopes are
extracted, which are then summed up and an autocorrelation function is used to de-
tect the main pitches. The three dominant peaks are accumulated into a histogram,
where each bin corresponds to a musical note. The histogram thus contains infor-
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mation about the pitch range of a piece of music. A folded version of the histogram,
obtained by mapping the notes of all octaves onto a single octave, contains informa-
tion about the pitch classes or the harmonic content. The amplitude of the maximum
peak of the folded histogram (i.e. magnitude of the most dominant pitch class), the
period of the maximum peak of the unfolded (i.e. octave range of the dominant
pitch) and folded histogram (i.e. main pitch class), the pitch interval between the
two most prominent peaks of the folded histogram (i.e. main tonal interval relation)
and the overall sum of the histogram are computed as features.

3.1.3 Chroma Features

Chroma features aim at representing the harmonic content (e.g, keys, chords) of a
short-time window of audio. The Chroma vector is a perceptually motivated fea-
ture vector[11]. It uses the concept of chroma in the cyclic helix representation
of musical pitch perception [36]. Chroma therein refers to the position of a pitch
within an octave. The chroma vector thus represents magnitudes in twelve pitch
classes in a standard chromatic scale (e.g., black and white keys within one octave
on a piano). The feature vector is extracted from the magnitude spectrum by using
a short-time Fourier transform (STFT). We specifically employ the feature extrac-
tor implemented in the MARSYAS system, which computes four statistical values
(means and variances over a texture window of one second), for each of the 12
chromatic notes, thus finally resulting in a 48-dimensional feature vector.

3.1.4 Rhythm Patterns

Rhythm Patterns (RP), also called Fluctuation patterns, are a feature set for handling
audio data based on analysis of the spectral audio data and psycho-acoustic trans-
formations [33, 17]. The feature set has been employed e.g. in the SOM-enhanced
jukebox (SOMeJB) [30] digital music library system. Rhythm patterns are basi-
cally a matrix representation of fluctuations on several critical bands. An overview
of the computational steps is given in Figure 2, which also depicts the process for
obtaining the Statistical Spectrum Descriptions and Rhythm Histograms, which are
derived from the Rhythm Patterns features, and skip or modify some of the pro-
cessing steps; further, they exhibit a different feature dimensionality, and represent
different aspects of the audio signal.

If needed, a set of preprocessing steps is applied before the actual feature com-
putation: multiple channels are averaged to one, and the audio is segmented into
parts of six seconds. Often, it can be of advantage to leave out possible lead-in and
fade-out segments, which might greatly differ from the rest of the song. Depending
on the processing capability available, also further segments maybe be skipped, e.g.
only processing every third segment.

The feature extraction process for a Rhythm Pattern is then composed of two
stages, indicated as steps S1–S6 and R1–R3 in Figure 2. First, the spectrogram of the
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Fig. 2 Steps of the feature extraction process for Rhythm Patterns (RP), Statistical Spectrum De-
scriptors (SSD), and Rhythm Histograms (RH)

audio is computed for each segment, utilising the short time Fast Fourier Transform
(STFT), and applying a Hanning window (cf. S1). Next we employ the Bark scale,
a perceptual scale that groups frequencies to critical bands according to percep-
tive pitch regions. Applying the scale to the spectrograms results in an aggregation
to 24 frequency bands (S2). A Spectral Masking spreading function is applied to
the signal, which models the occlusion of one sound by another sound (S3). Then,
the Bark scale spectrogram is transformed into the decibel scale (S4), and further
psycho-acoustic transformations are applied: computation of the Phon scale (S5)
incorporates equal loudness curves, which account for the different perception of
loudness at different frequencies. Subsequently, the values are transformed into the
unit Sone (S6), which relates to the Phon scale in the way that a doubling on the
Sone scale sounds to the human ear like a doubling of the loudness. This results in a
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psycho-acoustically modified Sonogram representation that reflects human loudness
sensation.

In the second stage, the varying energy on a critical band in the Bark-scale Sono-
gram is regarded as a modulation of the amplitude over time. A discrete Fourier
transform is applied to this Sonogram, resulting in a time-invariant spectrum of
loudness amplitude modulation per modulation frequency for each individual criti-
cal band (R1). After additional weighting (R2) and smoothing steps using a gradient
filter and Gaussian smoothing (R3), a Rhythm Pattern finally exhibits the magnitude
of modulation for 60 frequencies on 24 bands, and has thus 1440 dimensions.

In order to summarise the characteristics of an entire piece of music, the median
of the Rhythm Patterns of the six-second segments is computed.

3.1.5 Statistical Spectrum Descriptors

Statistical Spectrum Descriptors (SSD) features are derived based on the first stage
of the Rhythm Patterns computation, i.e. on the Bark-scale representation of the
frequency spectrum (cf. steps S1–S6 in Figure 2). In order to describe fluctuations
within the critical bands, from this representation of perceived loudness, seven sta-
tistical measures are subsequently computed for each segment per critical band: the
mean, median, variance, skewness, kurtosis, min- and max-values, resulting in a
Statistical Spectrum Descriptor for a segment. The SSD feature vector for a piece
of audio is then again calculated as the median of the descriptors of its segments.

In contrast to the Rhythm Patterns feature set, the dimensionality of the feature
space is much lower: SSDs have 24×7=168 instead of 1440 dimensions, and this
at matching performance regarding genre classification accuracies [17], on specific
data sets even outperforming the Rhythm Patterns [18].

3.1.6 Rhythm Histogram Features

The Rhythm Histogram (RH) features are capturing rhythmical characteristics in a
piece of music. Contrary to the Rhythm Patterns and the Statistical Spectrum De-
scriptor, information is not stored per critical band. Instead, early in the second stage
of the RP calculation process (after step R1 in Figure 2), the magnitudes of each
modulation frequency of all 24 critical bands are summed up, forming a histogram
of 60 bins of ‘rhythmic energy’ per modulation frequency between 0.168 and 10
Hz. For a given piece of music, the Rhythm Histogram feature set is again calcu-
lated by taking the median of the histograms of every single segment processed.
Rhythm Histogram features represent similar information as the Beat Histogram of
MARSYAS, but have a different extraction approach.

We further utilise the beats per minute (BPM) feature, computed from the mod-
ulation frequency of the peak of a Rhythm Histogram, to give a comparison to the
lyrics-based words per minute (WPM) feature (cf. Section 3.2.2).
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3.2 Lyrics Features

In this section we describe the four types of lyrics features we use in the experiments
throughout the remainder of the paper: a) bag-of-words features computed from
tokens (terms) occurring in documents, b) rhyme features taking into account the
rhyming structure of lyrics, c) features considering the distribution of certain parts-
of-speech, and d) text statistics features covering average numbers of words and
particular characters. The latter three feature sets are referred to as rhyme and style
features.

3.2.1 Bag-Of-Words

Classical bag-of-words indexing at first tokenises all text documents in a collection,
most commonly resulting in a set of words representing each document. Let the
number of documents in a collection be denoted by N, each single document by d,
and a term or token by t. Accordingly, the term frequency t f (t,d) is the number of
occurrences of term t in document d and the document frequency d f (t) the number
of documents term t appears in. From this, an inverse document frequency id f can
be computed.

The process of assigning weights to terms according to their importance or sig-
nificance for the classification is called ‘term-weighing’. The basic assumptions are
that terms which occur very often in a document are more important for classifica-
tion, whereas terms that occur in a high fraction of all documents are less important.
The weighing we rely on is the most common model of term frequency times inverse
document frequency [35], computed as:

t f × id f (t,d) = t f (t,d) · ln(N/d f (t)) (1)

This results in vectors of weight values for each document d in the collection, i.e.
each song lyrics document. This representation also introduces a concept of similar-
ity, as lyrics that contain a similar vocabulary are likely to be semantically related.
We do not perform term stemming in this setup, as earlier experiments showed only
negligible differences for stemmed and non-stemmed features [24]; the rationale be-
hind using non-stemmed terms is the occurrence of slang language in some genres,
which we aim to preserve.

Selecting all terms present in a document collection will in most cases yield a vo-
cabulary too large to be adequately processed by machine learning algorithms. Fur-
ther, some terms might rather add noise than helping to distinguish documents from
different genres. Thus, feature (or term) selection is an important pre-processing
step. In this work, we employ a frequency thresholding technique: we omit terms
that occur too frequent, and thus are likely stop-words, and terms that occur in too
few documents, and therefore likely have less discriminative power.
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Table 1 Overview of text statistic features

Feature Name Description
exclamation mark, colon, quote, comma,
question mark, dot, hyphen, semicolon

simple counts of occurrences

d0 - d9 occurrences of digits
WordsPerLine words / number of lines
UniqueWordsPerLine unique words / number of lines
UniqueWordsRatio unique words / words
CharsPerWord number of chars / number of words
WordsPerMinute the number of words / length of the song

3.2.2 Text Statistic Features

Text documents can also be described by simple statistical measures based on term
(word) or character frequencies. Measures such as the average length of words or
the ratio of unique words in the vocabulary capture aspects of the complexity of the
texts, and are expected to vary over different genres. Further, the usage of punctua-
tion marks such as exclamation or question marks may be specific for some genres.
We further expect some genres to make increased use of apostrophes when omit-
ting the correct spelling of word endings. The list of extracted features is given in
Table 1.

All features that simply count character occurrences are normalised by the num-
ber of words of the song text to accommodate for different lyrics lengths. ‘WordsPer-
Line’ and ‘UniqueWordsPerLine’ describe the words per line and the unique num-
ber of words per line. The ‘UniqueWordsRatio’ is the ratio of the number of unique
words and the total number of words. ‘CharsPerWord’ denotes the simple average
number of characters per word. The last feature, ‘WordsPerMinute’ (WPM), is com-
puted analogously to the well-known beats-per-minute (BPM) value1. Even though
the computation is similar, the two features may still take very different values in
various genres – as such, both ‘Hip-Hop’ and e.g. ‘Techno’ music may have similar
BPM, but the latter generally way less song text, and thus much lower WPM values.

3.2.3 Part-of-Speech Features

Part-of-speech tagging is a lexical categorisation or grammatical tagging of words
according to their definition and the textual context they appear in. Different part-of-
speech categories are for example nouns, verbs, articles or adjectives. We presume
that different genres will differ also in the category of words they are using, and
therefore we additionally extract several part of speech descriptors from the lyrics.
To this end, we employ the ‘LingPipe’ suite of libraries 2. We in particular count the

1 Actually we use the ratio of the number of words and the song length in seconds to keep feature
values in the same range. Hence, the correct name would be ‘WordsPerSecond’, or WPS.
2 http://alias-i.com/lingpipe/
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Table 2 Rhyme features for lyrics analysis

Feature Name Description
Rhymes-AA A sequence of two (or more) rhyming lines (‘Couplet’)
Rhymes-AABB A block of two rhyming sequences of two lines (‘Clerihew’)
Rhymes-ABAB A block of alternating rhymes
Rhymes-ABBA A sequence of rhymes with a nested sequence (‘Enclosing rhyme’)
RhymePercent The percentage of blocks that rhyme
UniqueRhymeWords The fraction of unique terms used to build the rhymes

numbers of: nouns, verbs, pronouns, relational pronouns (such as ‘that’ or ‘which’),
prepositions, adverbs, articles, modals, and adjectives. To account for different doc-
ument lengths, all of these values are normalised by the number of words of the
respective lyrics document.

3.2.4 Rhyme Features

Rhyme denotes the the consonance or similar sound of two or more syllables or
whole words. This linguistic style is most commonly used in poetry and songs. The
rationale behind the development of rhyme features is that different genres of music
should exhibit different styles of lyrics. We assume the rhyming characteristics of
a song to be given by the degree and form of the rhymes used. ‘Hip-Hop’ or ‘Rap’
music, for instance, makes heavy use of rhymes, which (along with a dominant
bass) leads to their characteristic sound. To automatically identify such patterns we
introduce several descriptors from the song lyrics to represent different types of
rhymes.

For the analysis of rhyme structures we do not rely on lexical word endings, but
rather apply a more correct approach based on phonemes – the sounds, or groups
thereof, in a language. Hence, we first need to transcribe the lyrics to a phonetic rep-
resentation. The words ‘sky’ and ‘lie’, for instance, both end with the same phoneme
/ai/. Phonetic transcription is language dependent, thus the language of song lyrics
first needs to be identified, using e.g. the text categoriser ‘TextCat’ [5] to determine
the correct transcriptor to apply. However, for our test collections presented in this
paper we considered only songs in English language, and we therefore exclusively
use English phonemes. For the transcription step, we utilise the ‘Analysing Sound
Patterns’ software package 3. This package includes a phoneme transcriptor, which
is derived from early work on text-to-speech translation [9], which introduced a
set of 329 letter-to-sound rules that translate from English text to the international
phonetic alphabet (IPA).

After transcribing the lyrics into this phoneme representation, we distinguish two
basic patterns of subsequent lines in a song text: AA and AB. The former represents

3 http://www2.eng.cam.ac.uk/ tpl/asp/
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two rhyming lines, while the latter denotes non-rhyming. Based on these basic pat-
terns, we extract the features described in Table 2.

As the simplest structure, a ‘Couplet’ AA describes the rhyming of two or more
subsequent pairs of lines. It usually occurs in the form of a ‘Clerihew’, i.e. several
blocks of Couplets such as AABBCC. Another common pattern is the alternating
rhyme, in the form of ABAB. An enclosing rhyme, defined as ABBA, denotes the
rhyming of the first and fourth, as well as the second and third out of four lines.
Based on these structure, we further measure ‘RhymePercent’, the percentage of
lines with rhyming patterns versus the total number of lines in a song. Besides, we
define the unique rhyme words as the fraction of unique terms used to build rhymes
‘UniqueRhymeWords’, which describes whether rhymes are frequently formed us-
ing the same word pairs, or a wide variety of words is used for the rhymes.

For our initial studies, we do not take into account rhyming schemes based on as-
sonance, semirhymes, or alliterations. We also do not yet incorporate more elaborate
rhyme patterns, especially not the less obvious ones, such as the ‘Ottava Rhyme’
of the form ABABABCC, and others. Also, we assign to all the rhyme forms the
same weights, i.e. we for example do not give more importance to complex rhyme
schemes. Experimental results lead to the conclusion that some of these patterns
may well be worth studying. An experimental study on the frequency of occur-
rences might be a good starting point first, as modern popular music does not seem
to contain many of these patterns.

4 Experiments

In this section we first introduce the test collections we use, followed by an illus-
tration of some selected characteristics of our new features on these collections. We
further present the results of our experiments, where we compare the performance
of audio features and text features using various classifiers.

4.1 Test Collections

Music information retrieval research in general suffers from a lack of standardised
benchmark collections, which is mainly attributable to copyright issues. Nonethe-
less, some collections have been used frequently in the literature, such as the col-
lections provided for the ISMIR 2004 ‘rhythm’ and ‘genre’ contest tasks, or the
collection presented in [37]. However, for the first two collections, hardly any lyrics
are available, as they are either instrumental songs, or their lyrics were not published
electronically. For the latter, no meta-data is available revealing the song titles, mak-
ing the automatic fetching of lyrics impossible. The collection used in [14] turned
out to be infeasible for our experiments. It consists of only about 260 pieces, and
was not initially used for genre classification: it was compiled from only about 20
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Table 3 Composition of the two small (collection 600 and collection 660) and two large (collec-
tion 3000 and collection 3120) test collections

collection 600 collection 3000
Genre Artists Albums Songs Artists Albums Songs
Country 6 13 60 9 23 227
Folk 5 7 60 11 16 179
Grunge 8 14 60 9 17 181
Hip-Hop 15 18 60 21 34 380
Metal 22 37 60 25 46 371
Pop 24 37 60 26 53 371
Punk Rock 32 38 60 30 68 374
R&B 14 19 60 18 31 373
Reggae 12 24 60 16 36 181
Slow Rock 21 35 60 23 47 372
Total 159 241 600 188 370 3009

collection 660 collection 3120
Children’s music 7 5 60 7 5 109
Total 166 246 660 195 375 3118

different artists, and it was not well distributed over several genres (we specifically
wanted to circumvent unintentionally classifying artists rather than genres).

To elude these limitations, we opted to compile our own test collections; more
specifically, we first constructed two test collections different in size, first presented
in [23]. For the first of these databases, we selected a total number of 600 songs
(collection 600) as a random sample from a private collection. We aimed at having
a high number of different artists, represented by songs from different albums, in
order to prevent biased results by too many songs from the same artist and album.
This collection thus comprises songs from 159 different artists, stemming from 241
different albums. The ten genres listed in the left-hand side of Table 3 are repre-
sented by 60 songs each. Note that the number of different artists and albums is not
equally spread, which is closer to a real-world scenario, though.

We then automatically fetched lyrics for this collection from the Internet using
the lyrics scripts provided for the Amarok Music Player4. These scripts are sim-
ple wrappers for popular lyrics portals on the Web. To obtain all lyrics we used
one script after another until all lyrics were available, regardless of the quality of
the texts with respect to content or structure. Thus, the collection is named collec-
tion 600 uncleansed.

In order to evaluate the impact of proper lyrics preprocessing, we then manu-
ally cleansed the automatically collected lyrics. This is a tedious task, which first
involves checking whether the fetched lyrics were matching the song at all. Then,
we corrected the lyrics both in terms of structure and content, i.e. all lyrics were
manually corrected in order to remove additional markup like ‘[2x]’, ’[intro]’ or
‘[chorus]’, and to include the unabridged lyrics for all songs. We payed special at-

4 http://amarok.kde.org

http://amarok.kde.org
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tention to completeness in terms of the resultant text documents being as adequate
and proper transcriptions of the songs’ lyrics as possible. This collection, which dif-
fers from collection 600 uncleansed only in the song lyrics quality, is thus called
collection 600 cleansed. Effects of manually cleansing lyrics as opposed to auto-
matic crawling from the Web on the performance of the lyrics features, as well as
the impact of stemming, were studied in [23] and [24]. As their impact has been
found to be rather small, and not consistently improving or degrading the classifica-
tion results, detailed studies on this issue are thus omitted here, and in the following
experiments we only employ the cleansed version of the collection.

To evaluate our findings from the smaller test collection on a larger one, we con-
structed a more diversified database. This collection includes all the songs of the
smaller collection, and consists of 3.010 songs, which can be seen as prototypical
for a private collection. The numbers of songs per genre range from 179 in ‘Folk’ to
381 in ‘Hip-Hop’. Detailed figures about the composition of this collection can be
taken from the right-hand side in Table 3. To be able to better relate and match the
results obtained for the smaller collection, we only selected songs belonging to the
same ten genres as in the collection 600.

In a novel set of experiments, we added one more genre to these existing collec-
tions, namely children’s music, consisting of nursery rhymes and similar songs. The
pieces of music in this genre in general have very distinctive acoustical properties,
with a strong focus on vocals, and little instrumentation, which is often limited to the
same instruments, such as guitars. Therefore, they already achieve high classifica-
tion accuracies with audio-only features, and are thus an interesting challenge to test
whether the lyrics features are able to improve performance also on genres that have
distinctive acoustical properties. We therefore extended our smaller test database by
60 more songs, thus creating the new database collection 660, and added a total of
109 songs to the larger collection, thus resulting in collection 3120, both of which
are illustrated also in Table 3.

4.2 Analysis of Selected Features

To demonstrate the ability of the newly proposed lyrics-based features to discrimi-
nate between different genres, we illustrate the distribution of the numerical values
for these new features across the different genres. We focus on the most interesting
features from each bag-of-words, rhyme, part-of-speech, and text statistic features,
for the collection 600 cleansed.

First, plots for selected features from the bag-of-words set, all of which were
among the highest ranked by the Information Gain feature selection method5, are
presented in Figure 3. Of those high ranked terms, we selected some that have in-
teresting characteristics regarding different classes. It can be generally said that no-

5 Information Gain is a popular feature selection criterion, measuring the information obtained by
a single term for category classification [31]
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(a) n*gga (b) f*ck (c) gun

(d) police (e) baby (f) girlfriend

(g) love (h) yo (i) nuh

(j) fi (k) jah

Fig. 3 Average t f × id f values of selected terms from the lyrics. Obscene words are obscured

tably ‘Hip-Hop’ seems to have a lot of commonly used terms, especially from swear
and cursing language (subsequently obscured), or slang terms. This can be seen in
Figure 3(a) and 3(b), showing the terms ‘n*gga’ and ‘f*ck’. While ‘n*gga’ is used
almost solely in ‘Hip-Hop’ (in many types – singular and plural forms, with ending
‘s’ and ‘z’), ‘f*ck’ is also used in ‘Metal’ and to some lesser extent in ‘Punk-Rock’.
On the contrary, ‘R&B’ and ‘Pop’ do not use the term at all, and other genres just
very rarely employ it. Regarding the dominant topics, ‘Hip-Hop’ also frequently
has violence and crime as content of their songs, which is exemplified in the terms
‘gun’ and ‘police’ in Figures 3(c) and 3(d), respectively. Both terms are also used in
‘Grunge’ and ‘Reggae’.

By contrast, ‘R&B’ has several songs concerning relationships, which is illus-
trated in Figures 3(e) and 3(f). Several genres deal with love, but to a very varying
extent. In ‘Country’, ‘R&B’, and ‘Reggae’, this is a dominant topic, while it hardly
occurs in ‘Grunge’, ‘Hip-Hop’, ‘Metal’ and ‘Punk-Rock’.
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(a) Rhyme percentage (b) Unique Rhyme Words per Line

(c) Rhymes pattern AABB (d) Rhymes pattern ABBA

Fig. 4 Average values for selected rhyme features

Another interesting aspect is the use of slang and colloquial terms, or more gen-
erally using a transcription of the phonetic sound of some words. This is especially
used in the genres ‘Hip-Hop’ and ‘Reggae’, but also in ‘R&B’. Figure 3(h), for in-
stance, shows that both ‘Hip-Hop’ and ‘R&B’ make use of the word ‘yo’, while
‘Reggae’ often uses a kind of phonetic transcription, as e.g. the word ‘nuh’ for ‘not’
or ‘no’, or many other examples, such as ‘mi’ (me), ‘dem’ (them), etc. ‘Reggae’
further employs a lot of particular terms, such es ‘jah’, which stands for ’god’ in
the Rastafari movement, or the Jamaican dialect word ‘fi’, which is used instead of
‘for’.

Summarising, a seemingly high amount of terms that are specific for ‘Hip-Hop’
and ‘Reggae’ can be observed, which should render those two genres well distin-
guishable from the others regarding bag-of-words features.

Figure 4 depicts selected rhyme features. ‘Reggae’ has the highest value of per-
centage of rhyming lines, while the other genres have rather equal usage of rhymes.
‘Folk’ may seem as using the most creative language for building those rhymes,
which is manifested in the clearly higher number of unique words forming the
rhymes, rather than repeatidly using the same words. ‘Grunge’ and ‘R&B’ seem
to have distinctively lower values than the other genres. The distribution across the
actual rhyme patterns used is also quite different over the genres, where ‘Reggae’
lyrics use a lot of AABB patterns, and ‘Punk Rock’ employs mostly ABBA patterns,
while ‘Grunge’ makes particular little use of the latter.

Figure 5 presents plots of the most relevant part-of-speech features. Adverbs
seem to help discriminating ‘Hip-Hop’ with low and ‘Pop’ and ‘R&B’ with higher
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(a) Adverbs (b) Articles

(c) Modals (d) Rel. pronouns

Fig. 5 Average values for selected part-of-speech features

values over the other classes. ‘R&B’ further can be well discriminated due to the
infrequent usage of articles in the lyrics. Modals, on the other hand, are rarely used
in ‘Hip-Hop’.

Finally, the most interesting features from the text statistics type are illustrated
in Figure 6. ‘Reggae’, ‘Punk Rock’, ‘Metal’, and, to some extent, also ‘Hip-Hop’
seem to use very expressive language, which manifests in the higher percentage of
exclamation marks appearing in the lyrics. ‘Hip-Hop’ and ‘Folk’ in general seem
to have more creative lyrics, indicated by the higher percentage of unique words
used as compared to other genres, which may have more repetitive lyrics. ‘Words
per Minute’ appears to be a very good feature to distinguish ‘Hip-Hop’ as the genre
with the fastest sung (or spoken) lyrics from music styles such as ‘Grunge’, ‘Metal’
and ‘Slow Rock’. The latter frequently have longer instrumental phases, especially
longer lead-ins and fade-outs, and the pace of singing is adapted towards the general
slower tempo of the (guitar) music. Comparing this feature with the well-known
‘Beats per Minute’ descriptor, it can be noted that the high tempo of ‘Hip-Hop’
lyrics coincides with the high number of beats per minute. ‘Reggae’ on the other
hand has an even higher number of beats, and even though there are several pieces
with fast lyrics, it is also characterised by longer instrumental passages, as well as
words accentuated longer.
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(a) Exclamation marks (b) Unique words per line

(c) Words per minute (d) Beats per minute

Fig. 6 Average values for selected text statistic features and beats-per-minute

4.3 Experimental Results

After describing our experimental setup, we then discuss in detail the performance
of the different audio and lyrics-only feature sets, and their combinations. We eval-
uate the impact of manually cleansing the lyrics, and specifically the performance
of the newly added genre of children’s music.

4.3.1 Setup

For each of the databases, we extract the audio and lyrics feature sets described in
Section 3. We then build several combinations of these different feature sets, both
separately within the audio and lyrics modalities, as well as combinations of audio
and lyrics feature sets. This results in several dozens of different feature set combi-
nations, out of which the most interesting ones are presented here. Most combina-
tions with audio features are done with the SSD, as those are the best performing
audio feature set.

For all our experiments, we employed the WEKA machine learning toolkit 6,
and unless otherwise noted used the default settings for the classifiers and tests. We
utilised mainly k-Nearest-Neighbour, Naı̈ve Bayes and Support Vector Machines.
We performed the experiments based on a ten-fold cross-validation, which is fur-

6 http://www.cs.waikato.ac.nz/ml/weka/
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Table 4 Classification accuracies and results of significance testing for various combinations of
audio features for the 600 song collection (collection 600 cleansed). Statistically significant im-
provement or degradation over datasets (column-wise) is indicated by (+) or (−), respectively

Feature set Dim. 4-NN 5-NN NB SVM/pol SVM/lin SVM/rbf
Chroma 48 18.33 - 18.50 - 18.77 - 19.60 - 22.53 - 14.63 -
MFCC 52 26.43 - 27.43 - 23.37 - 29.63 - 29.80 - 18.70 -
Marsyas 68 28.63 - 30.33 - 25.70 - 31.63 - 30.53 - 21.43 -
RP 1440 32.27 - 31.77 - 37.60 - 46.30 - 48.47 - 44.20
RH 60 29.73 - 29.03 - 31.13 - 36.03 - 36.47 - 28.97 -
SSD (base-line) 168 48.97 49.57 44.57 56.63 59.37 44.20
SSD / Chroma 216 50.70 51.90 42.37 59.30 59.17 43.13
SSD / Mars. 236 48.70 49.17 44.20 58.27 59.83 46.13
SSD / Mars. / Chroma 284 47.53 49.10 43.30 58.30 59.33 45.57
SSD / Mars. / Chroma / RH 344 47.73 48.60 42.67 59.67 60.90 46.97
SSD / Mars. / RH 296 49.50 49.63 43.90 59.93 61.10 47.67
SSD / MFCC 220 51.23 51.07 44.73 58.93 59.77 45.83
SSD / RH 228 49.37 49.80 43.17 58.57 60.37 46.83
SSD / RP 1608 41.77 - 39.87 - 41.77 57.73 60.23 52.87 +
SSD / RP / RH 1668 41.63 - 40.27 - 41.40 57.50 60.43 53.30 +

ther averaged over five repeated runs. All results given in this sections are micro-
averaged classification accuracies. i.e. they are calculated giving equal weight to
each document. Statistical significance testing is performed per column, using a
paired t-test with an α value of 0.05. In the following tables, plus signs (+) denote
a significant improvement, whereas minus signs (−) denote significant degradation.
The best results for each group of features are indicated by bold print.

4.3.2 Small Database – Collection 600

Table 4 shows the results for genre classification experiments performed on the
small collection using only audio-based feature sets. The columns show the results
for three different types of machine learning algorithms, with different parameter
settings: k-NN with k = 4 and k = 5 and employing Euclidean distance, Support
Vector Machine with linear (SVM/lin), polynomial (quadratic, SVM/pol), and ra-
dial basis function (SVM/rbf) kernels, and a Naı̈ve Bayes (NB) classifier. All six
algorithm variations were applied to the six single feature sets, as well as nine dif-
ferent combinations thereof. Significance testing is performed per column, using the
SSD features as the base line.

Generally, the highest classification results, sometimes by far better, are achieved
with the SVM, which is thus the most interesting classifier for a more in-depth anal-
ysis. For the single audio feature sets, the Statistical Spectrum Descriptors (SSD)
achieves the highest accuracy (59.37%) of all, followed by Rhythm Patterns (RP)
with an accuracy of 48.47%, both with the SVM with linear kernel. SSD clearly out-
performs all the other feature sets with statistical significance, except for the SVM
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classifier with the RBF kernel, which achieves the exact same result on both SSD
and RP. Apart from the Rhythm Patterns on the different SVM kernel variations,
SSD features outperform the other sets by factors of 1.6 to 3.0.

Regarding the combinations of different audio feature sets, it was possible to in-
crease the SSD baseline with some of the combinations with other feature sets, on
one classifier with the Chroma features, on two in combination with MFCCs and by
adding Marsyas and Rhythm Histograms (RH), and once by combing the SSD with
the RH and RP. For most of those combinations, however, no change in performance
that would be of statistical significance could be obtained; the only notable excep-
tion are the combination of SSD with RP only and both the RP and RH, yielding a
significant degradation on the k-NN classifiers and a significant improvement util-
ising the SVM with RBF kernels. For the former, this most likely can be attributed
to the generally poor performance of k-NN on high-dimensional feature sets, while
for the latter, the baseline on the SSD-only features with the RBF kernel is very low
compared to the other classifiers, even lower than k-NN.

Regarding the individual performance of the different classifiers, for k-NN it can
be noted that there is no clear pattern on a better performance of a single classi-
fier, even though the 5-NN seems to perform slightly better on most feature sets.
For the SVMs, except for two out of the 15 feature sets, the linear kernel always
got the highest results; especially the RBF kernel-based SVMs performed signifi-
cantly worse. Thus, for the following experiments, we employ only the linear kernel.

After these initial experiments, we chose the highest result achievable with audio-
only features, the SSD features, as the baseline we want to improve on. The SSDs
show in general very good performance on our databases, with the achieved al-
most 60% clearly outperforming the minimal baseline of 10% on a database of ten
equally-sized classes. Thus, they are as such a challenging baseline.

In Table 5, we detail the results of the different lyrics features, and their com-
bination with the audio-only feature sets on the small, cleansed database (collec-
tion 600 cleansed), that is with automatic lyric fetching and manual checking of
the retrieved lyrics. The experiments were again performed with six different clas-
sifiers, in contrary to those in Table 4 we employ also a 3-NN instead of the RBF
kernel SVM, to give more details on the behaviour of the different k values. Indeed,
3-NN is the best performing of the k-NN family on a number of low-dimensional
feature sets.

For the lyrics-only features, the rhyme features yield the lowest accuracies, while
the Text-Statistics feature achieve a 29.73% accuracy, using a linear SVM. This re-
sult is remarkable, as it significantly outperforms the Chroma features, and is nearly
achieving the results of MFCCs (0.07% short) and Marsyas (0.8% difference), com-
ing at a very low dimensionality of only 23 features, while they are fast in compu-
tation. All combinations of the Text-Statistics features with the Part-of-Speech and
/ or Rhyme features achieve better results than Text-Statistics features alone.
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Table 5 Classification accuracies and results of significance testing for various combinations of
lyrics features for the 600 song collection (collection 600 cleansed). Statistically significant im-
provement or degradation over datasets (column-wise) is indicated by (+) or (−), respectively

Feature set Dim. 3-NN 4-NN 5-NN NB SVM/lin
Rhyme 6 13.93 13.20 13.37 15.00 13.77
POS 9 16.13 18.23 17.57 19.63 20.03
Text-stat (base line) 23 21.00 21.20 22.00 21.70 29.73

Text-stat / POS 32 25.87 + 25.17 24.77 22.80 31.27
Text-stat / Rhyme 29 23.73 23.13 23.60 22.87 31.03
Text-stat / POS / Rhyme 38 22.90 24.47 26.07 24.20 + 30.63

Chroma (base-line) 48 17.87 18.33 18.50 18.77 22.53
Chroma / Text-stat 71 23.07 + 23.93 + 23.87 + 22.33 + 32.87 +
Chroma / Text-stat / POS 80 21.43 21.00 21.57 22.53 + 34.87 +
Chroma / Text-stat / POS / Rhyme 86 21.47 20.83 21.53 23.27 + 35.07 +
Chroma / Text-stat / Rhyme 77 21.80 22.47 22.83 23.53 + 33.43 +

MFCC (base-line) 52 24.50 26.43 27.43 23.37 29.80
MFCC / Text-stat 75 27.83 31.50 + 31.47 29.57 + 38.43 +
MFCC / Text-stat / POS 84 29.07 + 31.17 + 32.07 30.13 + 38.27 +
MFCC / Text-stat / POS / Rhyme 90 28.77 30.90 32.50 + 31.33 + 39.63 +
MFCC / Text-stat / Rhyme 81 29.53 + 30.87 31.40 29.90 + 38.50 +
MFCC / POS / Rhyme 67 23.37 26.20 28.10 26.53 + 34.53 +

Marsyas (base-line) 68 26.00 28.63 30.33 25.70 30.53
Mars. / Text-stat 91 29.23 30.60 32.90 30.50 + 37.83 +
Mars. / Text-stat / POS 100 29.57 33.27 + 32.47 31.03 + 37.50 +
Mars. / Text-stat / POS / Rhyme 106 30.30 32.53 34.10 31.83 + 39.37 +
Mars. / Text-stat / Rhyme 97 28.97 32.37 33.73 30.90 + 39.00 +

SSD (base-line) 168 48.60 48.97 49.57 44.57 59.37
SSD / Text-stat 191 51.20 53.07 + 53.30 + 46.80 64.53 +
SSD / Text-stat / POS 200 51.97 + 51.00 51.70 46.73 64.07 +
SSD / Text-stat / POS / Rhyme 206 50.63 51.90 53.00 47.37 + 62.90 +
SSD / Text-stat / Rhyme 197 50.17 52.30 + 52.93 47.57 + 63.93 +

When combining the different audio-features with the lyrics-based feature sets,
it can be noted that in any combination, we achieve higher results than with the
lyrics features alone. Especially for SVM, those improvements are always statisti-
cally significant when we include the Text-statistics features, which is also the case
for all but two combinations when applying Naı̈ve Bayes classification. For the k-
NN, there is almost always one combination of features that leads to significant
improvement. The combination of MFCCs is the only one where we can achieve
significant improvement with adding just the Rhyme and POS features on SVM and
NB, not using the Text-statistics features.

Compared to the baseline results achieved with SSDs, all four combinations of
SSDs with the text statistic features yield higher performance, and at least one (and
even all four in the case of SVMs) are statistically significant. The highest accu-
racy values are obtained for an SSD and text-statistic feature combination (64.53%),
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Table 6 Classification accuracies and results of significance testing for various combinations of
lyrics features for the 660 song collection (collection 660). Statistically significant improvement or
degradation over the resp. audio-features-only baseline (column-wise) is indicated by (+) or (−),
respectively

Feature set Dim. 3-NN 4-NN 5-NN NB SVM/lin
Chroma 48 15.94 18.21 19.03 17.94 22.06
MFCC 52 25.39 26.55 27.67 24.27 30.06
Mars. 68 28.33 29.94 30.21 27.33 31.88
RH 60 27.82 29.27 28.76 30.55 36.42
RP 1440 28.12 30.67 30.55 37.06 48.70
SSD 168 49.18 50.15 51.97 44.21 61.36
BOW59 59 15.24 15.85 15.06 20.64 26.18
BOW150 150 10.97 10.24 9.42 24.97 29.52
BOW194 194 9.64 9.55 9.18 28.58 32.73
BOW653 653 11.21 10.03 10.03 32.58 33.52
BOW1797 1797 10.47 11.20 10.87 30.90 31.23

Mars. / Text-stat / POS 100 32.55 + 34.27 + 35.27 + 33.03 + 39.94 +
Mars. / Text-stat / Rhyme 97 30.73 32.67 34.39 + 33.06 + 41.33 +
Mars. / BOW248 316 26.06 25.73 26.42 28.91 41.67 +
Mars. / BOW653 721 17.00 - 19.18 - 21.64 - 33.27 + 42.61 +
Mars. / BOW194 / Text-stat 285 31.33 33.30 35.48 + 32.36 + 44.52 +
Mars. / BOW653 / Text-stat 744 24.06 - 26.09 - 27.45 34.45 + 46.61 +

SSD / Text-stat 191 53.42 + 54.06 + 55.06 + 47.15 + 66.27 +
SSD / Text-stat / Rhyme 197 53.42 + 54.12 + 54.91 + 48.39 + 65.55 +
SSD / BOW14 182 48.03 50.85 50.76 47.06 + 58.88
SSD / BOW573 741 45.30 47.30 46.70 - 38.45 - 63.21
SSD / BOW385 / Text-stat 576 50.67 53.76 54.88 38.00 - 65.30 +
SSD / BOW10 / Text-stat / POS 210 49.33 51.36 53.97 48.24 + 62.09
SSD / BOW248 / Text-stat / POS / Rhyme 454 50.85 53.88 53.06 37.39 - 65.70 +

which is 5.15%-points higher than the SSD-only value. It is interesting to note that
adding part-of-speech and rhyme features does not help to improve on this result on
SVMs, while it does on Naı̈ve Bayes and 3-NN.

4.3.3 Small Database with Children’s Music – Collection 660

Table 6 illustrates the results of adding the additional genre of ‘Children’s music’ to
the small collection, thus forming a database of 660 songs. First, it can be noted that,
when compared to the results on the smaller collection, with SVM classification and
linear kernel, the audio-only feature sets had mostly improved classification results
(except Chroma and RH). The improvements range from 0.5% for RP to 2% for
the SSD, which thus now achieves 61.36%. They are remarkable, as the classifica-
tion task per-se has become a bit harder, with a minimal baseline of now 9.09%.
The improvements thus already indicate that the new genre can be well captured
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by audio-only features. Again, combinations with the rhyme and style features can
improve the results significantly in many combinations.

On this database, we also present results from the bag-of-words features. In fact,
we show a number of bag-of-words feature sets of different feature dimensions,
which were obtained using different parameters for the document frequency thresh-
olding based feature selection. Using this feature set alone, with a still moderate
dimensionality of 653 topic terms, the best results are at around 33% for both SVM
and Naı̈ve Bayes. Notably, k-NN has rather poor performance, and further degrades
with higher dimensionality. Also for the other classifiers it has to be noted that with a
rising dimensionality, the accuracy starts to degrade again. Interestingly, both SVM
and Naı̈ve Bayes on BOW with 653 features can outperform the audio-only features
Marsyas, MFCC and Chroma, most of it statistically significant, except for SVMs on
the Marsays feature set. Rhythm histograms are outperformed on the Naı̈ve Bayes
classifier, while Rhythm Patterns and SSD are significantly outperforming any of
the bag-of-words features.

Also, it can be observed that adding the bag-of-words features can significantly
improve the results obtained with the Marsyas features, even over the best combina-
tion of Marsyas with the rhyme and style features. Finally, adding bag-of-words to
this aforementioned combination leads to a further improvement of more than 5%-
points with SVM, thus totally more than 15%-points difference to the Marsyas-only
features. Similar effects can be achieved for the other audio-only feature sets.

Regarding SSD features, the combination with the rhyme and style features again
yields significant improvement on all classifiers. Combinging them with the bag-of-
words features can still yield better results than the SSD-only features, however, it
leads to an improvement over the best combination with the rhyme and style fea-
tures only on the Naı̈ve Bayes classifier.

Finally, we want to examine the classification performance for each individual
genre; for this, we train SVMs with a linear kernel on the SSD and the combination
of SSD and Text-statistics feature set, which achieved the highest results. Table 7
gives the confusion matrix and the precision and recall values per class (in percent)
for both feature sets, SSD on the left side, and SSD combined with Text-statistics
on the right hand side.

With the audio features, high precision values can be achieved for the Children’s
music, R&B, Reggae, Punk Rock and Folk music, while Country, Slow Rock and
especially Grunge perform poor.

When adding the Text-statistics features to the SSD features, eight out of eleven
classes achieve a higher precision (of up to 25%), while the other three classes de-
grade in performance only by one percent; two out of those, namely Folk and R&B,
however, gain 7% and 8%, resp, in recall. Overall, the average precision, as well as
the recall and the F-measure7, thus rise from values around 61% to approximately
67%. The biggest increase in precision is achieved for Hip-Hop, which improves

7 The F-Measure or F-score is a commonly used measure including both precision and recall. In
our case, we specifically employ the F1-measure, calculated as 2×precision×recall

precision+recall
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Table 7 Confusion matrix on the collection 660: SSD (left) vs. SSD combined with Text-statistics
(right). Precision and recall are measured per class

classified as classified as
a b c d e f g h i j k genre a b c d e f g h i j k

34 3 0 0 2 8 0 0 2 10 1 a = Country 38 5 0 0 2 6 0 0 1 8 0
9 39 0 1 1 4 0 0 0 5 1 b = Folk 6 43 1 0 0 1 2 0 0 7 0
0 2 47 0 1 4 1 0 1 4 0 c = Grunge 1 2 49 1 1 2 1 0 0 3 0
0 2 0 39 0 3 1 6 8 0 1 d = Hip-Hop 0 0 0 50 0 0 1 6 2 0 1
2 3 3 0 34 4 10 0 0 4 0 e = Metal 0 6 2 0 36 4 8 0 0 4 0

10 3 9 4 4 11 3 2 1 11 2 f = Pop 9 3 8 0 4 16 3 4 0 12 1
5 2 5 0 10 2 36 0 0 0 0 g = Punk Rock 4 2 6 0 9 1 37 0 0 1 0
2 0 0 10 0 3 0 40 2 1 2 h = R&B 3 0 0 3 0 3 0 45 5 1 0
0 1 0 7 0 1 0 2 45 0 4 i = Reggae 2 0 0 2 0 1 0 3 47 0 5
8 1 8 1 3 5 1 1 1 27 4 j = Slow Rock 7 1 5 1 5 9 0 2 2 26 2
1 0 0 0 0 1 0 1 3 2 52 k = Children’s 0 1 0 0 0 0 0 0 3 1 55

47 69 65 63 62 23 69 76 71 42 77 Precision 54 68 69 88 63 37 71 75 78 41 86
57 65 78 65 57 18 6 67 75 45 87 Recall 63 72 82 83 6 27 62 75 78 43 92

from 63% to 88%; much of this increase is likely to be attributed to the ’words-
per-minute’ feature. Other genres that improve greatly in precision are Reggae and
Pop, even though the latter still has a low absolute precision. Of special interest is
also the genre of Children’s music. We noted before that children’s music has some
specific characteristics. This manifests e.g. in a focus on vocals, and a very limited
set of instruments used, mainly guitars and pianos. Therefore, this genre can be well
identified with audio-based feature sets, and indeed has a high recall of 52 out of 60,
or 87%, and a high precision of 78% already with the SSD features. However, even
in such cases, combining the audio features with lyrics-based features can improve
the performance, in this specific case by raising the recall to 92%, and the preci-
sion to 86%, when combined with the Text-statistics features. The number of songs
wrongly assigned into this genre greatly reduces, from 15 to only 8 songs.

4.3.4 Large Database

To confirm our findings from the small database, we further performed experiments
on the large collections (collection 3000, collection 3120). We again compare the
results of the single audio and lyrics feature sets, and the combinations thereof.
As there is not much difference in the variations of the k-NN algorithms, we now
only present the results of the best-performing of the tested versions, 5-NN. For the
SVMs, we again used a linear kernel.

The three centre columns in Table 8 give an overview of the accuracies of the
different feature sets. For the audio-only features, we can observe an increased ac-
curacy for most of the features set and classifier combinations, as compared to the
smaller collection. In the case of the best-performing SSDs on SVMs, the increase
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Table 8 Classification accuracies and results of significance testing for the large collections. Sta-
tistically significant improvement or degradation over datasets (column-wise) is indicated by (+)
or (−), respectively

Collection 3000 Collection 3120
Feature set Dim. NB SVM 5-NN NB SVM 5-NN
Chroma 48 18.96 24.01 21.24 16.57 23.18 20.35
MFCC 52 27.64 33.57 31.27 26.55 32.66 31.21
Mars. 68 30.20 37.65 34.14 29.23 36.97 33.93
RP 1440 34.44 55.65 41.10 34.27 55.73 39.90
RH 60 29.26 35.05 34.44 29.03 34.17 33.86
SSD 168 42.04 66.35 61.85 39.29 65.84 60.79
Rhyme 6 16.68 16.11 16.97 16.57 16.09 17.70
POS 9 23.67 23.94 21.14 23.60 23.22 20.46
Text-stat 23 17.27 28.70 24.78 17.09 28.16 24.79
POS / Rhyme 15 23.20+ 24.43- 21.66- 23.27+ 24.55- 21.41-
Text-stat / POS 32 18.84+ 31.23+ 25.91 19.18+ 31.41+ 25.72
Text-stat / POS / Rhyme 38 20.15+ 31.24+ 25.10 20.88+ 31.64+ 25.47

Chroma / Text-stat 71 21.00+ 32.61+ 26.00+ 20.64+ 32.34+ 25.97+
Chroma / Text-stat / POS 80 21.97+ 35.95+ 27.19+ 22.10+ 35.94+ 26.44+
Chroma / Text-stat / POS / Rhyme 86 22.31+ 36.19+ 27.35+ 22.97+ 36.54+ 27.20+
Chroma / Text-stat / Rhyme 77 21.53+ 33.45+ 26.06+ 21.89+ 33.45+ 25.83+
Chroma / POS / Rhyme 63 21.48+ 30.12+ 25.19+ 21.57+ 30.01+ 24.47+

MFCC / Text-stat 75 24.86- 40.48+ 33.98+ 24.35 40.40+ 33.69+
MFCC / Text-stat / POS 84 26.03 41.71+ 35.50+ 26.21 41.76+ 34.94+
MFCC / Text-stat / POS / Rhyme 90 26.83 42.28+ 34.07+ 27.55 42.35+ 33.67+
MFCC / POS 61 30.22+ 36.84+ 32.52 29.42+ 36.07+ 31.80
MFCC / POS / Rhyme 67 30.13+ 37.15+ 32.10 30.40+ 37.29+ 31.44

Mars. / Text-stat 91 27.08- 43.44+ 35.77+ 27.13 43.44+ 35.92+
Mars. / Text-stat / POS 100 28.33 44.98+ 37.17+ 28.50 44.91+ 36.32+
Mars. / Text-stat / POS / Rhyme 106 29.70 45.08+ 35.71 30.22 45.38+ 36.11+
Mars. / POS / Rhyme 83 32.67+ 41.54+ 34.14 32.91+ 41.82+ 33.68

SSD / Text-stat 191 43.70+ 68.57+ 62.41 42.14+ 68.38+ 61.80
SSD / Text-stat / POS 200 44.29+ 68.91+ 62.77 42.86+ 68.94+ 61.44
SSD / Text-stat / POS / Rhyme 206 44.51+ 68.35+ 62.36 43.44+ 68.36+ 61.35
SSD / Text-stat / Rhyme 197 44.10+ 68.00+ 62.02 42.75+ 68.01+ 61.81

is of 7%-points to 66.35%. Similar patterns can be observed for the lyrics-based fea-
tures, even though the flagship Text-statistics feature set achieves a 1% lower result
on the SVM.

Also for the combination of the audio feature sets with the lyrics based features, a
generally higher accuracy than on the smaller database can be noted, with total gains
of 12.18% (Chroma), 8.71% (MFCCs), and 7.43% (Marsyas). The improvement
over the SSD when combining them with the lyrics features is not as high as on the
smaller collection – the accuracy raised to 68.91%, constituting an improvement of
2.55%-points, which is statistically significant. In general, it seems that the influence
of part-of-speech and rhyme features is higher in this database, as they are more
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often part of the highest-performing feature set combination than in the smaller
collection.

The right columns in Table 8 finally show a summary of the results on the large
database, extended by adding about 110 songs from the children’s music genre.
The audio-only features generally perform a bit worse, between 0.1 and 0.8% when
using SVMs, a bit more on some of the other classifiers. The same holds true for
the rhyme and style features, though in their combinations among themselves, for
some classifiers, the results are slightly, at most about 0.4%, higher than without
the children’s music genre. Similarly, most of the combinations of audio and lyrics
features perform slightly better on this database.

5 Beyond Audio and Lyrics

Much of today’s research in Music Information Retrieval is driven by audio-only
genres, and classification of pieces of music therein. However, user studies have
revealed that this narrow focus poses certain problems. For example, semantic gen-
res such as Christmas songs or love-songs, cannot be adequately captured by audio
features, as they might comprise musical genres – Christmas songs can actually be
classical music, pop songs, or punk rock. Christian Rock is a genre that can virtually
only be detected via the song texts. Similarly, pop music is a genre that is generally
difficult to grasp with only acoustical features, as the common property of pop mu-
sic is maybe more in the orientation towards being commercial music, rather than
in musical characteristics. Thus, it is important to incorporate additional modalities
as sources for features describing music. Such sources can e.g. be the song lyrics,
album covers, social web data, etc.

In this paper, we thus presented a set of rhyme and style features for automatic
lyrics processing, namely features to capture characteristics such as rhyme, parts-
of-speech, and text statistics of song lyrics. We further combined these new feature
sets with the standard bag-of-words features and well-known feature sets for acous-
tic analysis of digital audio tracks. To show the positive effects of feature com-
bination on classification accuracies in musical genre classification, we performed
experiments on two test collections. A smaller collection, consisting of 600 songs
was manually edited and contains high quality unabridged lyrics. We then extended
this database by adding songs from the children’s music genre, which are already
well distinguishable on the audio features, and thus posed an interesting challenge
on whether there could be further performance gains with this new dataset. We fur-
ther compiled a larger test collection, comprising more than 3000 songs, which was
again analysed in two flavours, with and without the children’s music. Using only
automatically fetched lyrics, we achieved similar results in genre classification.

The most notable results reported in this paper are statistically significant im-
provements in musical genre classification. We outperformed both audio features
alone as well as their combination with simple bag-of-words features. We conclude
that combination of feature sets is beneficial in two ways: a) possible reduction in
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dimensionality, and b) statistically significant improvements in classification accu-
racies. Future work hence is motivated by the promising results presented in this
paper. Noteworthy future research areas in terms of machine learning are on more
sophisticated ways of feature combination via ensemble classifiers, which pay spe-
cial attention to the unique properties of single modalities and the different charac-
teristics of certain genres in specific parts of the feature space. Additionally, a more
comprehensive investigation of feature selection techniques and the impact of indi-
vidual/global feature selection might further improve results.

Another topic for future research is the continued expansion of modalities and
types of feature representations to be used for music analysis. A ‘glass-ceiling’ of
achievable performance in regards to music information retrieval based on naı̈ve
timbral audio features only is discussed in [2]. It is further suggested that more
high-level musical features are needed to overcome this limitation. While improved
audio feature sets have been designed to address this issue, it is certainly of interest
to look beyond the audio-only domain.

Steps in this direction have been discussed in this paper. Yet, we need to expand
way beyond this scope. Album covers, for example, are carefully designed for spe-
cific target groups. Searching for music in a record shop is facilitated by browsing
through album covers. There, album covers can, and have to, reveal very quickly the
musical content of the album, and are thus used as strong visual clues [7]. Due to
well-developed image recognition abilities of humans, this task can be performed
very efficiently, much faster than listening to excerpts of the songs. Also, [4] sug-
gests that ‘an essential part of human psychology is the ability to identify music,
text, images or other information based on associations provided by contextual in-
formation of different media’. It further suggests that a well-chosen cover of a book
can reveal it’s contents, or that lyrics of a familiar song can remind one of the song’s
melody.

However, capturing the semantic meaning of album covers is a challenging task,
requiring advanced pattern recognition and image retrieval methods. Concepts in the
covers are more difficult to grasp than by simple colour histograms (even though for
some genres, such as Gothic with a focus on dark/black colours, this feature might
be a suitable candidate). More than that, it seems necessary to employ algorithms
to detect the fonts used, face recognition to detect whether or not the singer or band
feature on the cover, what scenery is depicted to e.g. indicate folk music, or which
objects, instruments, etc. are present, down to understanding the sentiment and emo-
tions of cover images.

This breath of information extends way beyond a cover, the song itself, or its
recording. It encompasses cultural aspects and community feelings as expressed by
subculture language, clothes and other aspects of social groupings.

Music may seem to be mono-modal, audio-only at first glance. Yet, it is inher-
ently multimodal, living from, playing with and serving information on a multitude
of layers. It needs to be appreciated and covered in all its multimodal complexities
if we want to fully explore its richness and do justice to its versatility.
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