Chapter 13
Music Recommender Systems

Markus Schedl, Peter Knees, Brian McFee, Dmitry Bogdanoyv,
and Marius Kaminskas

13.1 Introduction

Boosted by the emergence of online music shops and music streaming services,
digital music distribution has led to an ubiquitous availability of music. Music
listeners, suddenly faced with an unprecedented scale of readily available content,
can easily become overwhelmed. Music recommender systems, the topic of this
chapter, provide guidance to users navigating large collections. Music items that
can be recommended include artists, albums, songs, genres, and radio stations.

In this chapter, we illustrate the unique characteristics of the music recommen-
dation problem, as compared to other content domains, such as books or movies.
To understand the differences, let us first consider the amount of time required for
a user to consume a single media item. There is obviously a large discrepancy in
consumption time between books (days or weeks), movies (one to a few hours), and
a song (typically a few minutes). Consequently, the time it takes for a user to form
opinions for music can be much shorter than in other domains, which contributes
to the ephemeral, even disposable, nature of music. Similarly, in music, a single
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item may be consumed repeatedly (even multiple times in a row), while other media
items are typically consumed at most a few times. This implies that a user might not
only tolerate, but actually appreciate recommendations of already known items.

On a practical level, another distinguishing property is that music can be directly
addressed at different levels of abstraction. For instance, while movie recommenders
typically suggest individual items to the user, music recommendation approaches
may suggest groupings of items by genre, artist, or albums.

From a practitioner’s perspective, we note that collaborative filtering tech-
niques are inherently domain-agnostic, and can be easily applied to music rating
data [131, 134].! However, in the music domain, explicit rating data is relatively
rare, and even when available, tends to be sparser than in other domains [44].
Instead, implicit positive feedback is often drawn from uninterrupted (or unrejected)
listening events.

Due to the sparsity of readily available user feedback data, music recommenda-
tion techniques tend to rely more upon content descriptions of items than techniques
in other domains. Content-based music recommendation techniques are strongly
tied to the broader field of music information retrieval (MIR), which aims at
extracting semantic information from or about music at different representation
levels (e.g., the audio signal, artist or song name, album cover, or score sheet).?
Many of these approaches apply signal processing and analysis methods directly to
music in order to extract musically meaningful features and in turn enable novel
search and browsing interfaces. In all these scenarios, as is the case with memory-
based collaborative filtering methods (see Chap.2), the concept of similarity
is central. For content-based approaches, item similarity is typically computed
between item feature vectors. Section 13.2 provides an overview of content-based
music recommendation techniques, including both metadata and signal analysis
methods.

From the user’s perspective, content can play an important role in influencing
preferences for music. Studies in music psychology show that a user’s short-term
music preferences are influenced by various factors, such as the environment,
the emotional state, or the activity of the user [97]. We elaborate on contextual
music recommendation approaches in Sect. 13.3. In Sect. 13.4, we present hybrid
recommendation approaches which combine collaborative filtering, content-based,
and context-based methods.

Because users often listen to several songs in rapid succession—e.g., via
streaming radio or a personal music device—some recommender systems have
been designed specifically for serial recommendation [59]. Due to the unique

'We will not further detail collaborative filtering of music ratings in this chapter. To understand the
principles of this technique, we refer the reader to Chap. 2.

2To avoid confusion, we note that confent has different connotations within the MIR and
recommender systems communities. MIR makes an explicit distinction between (content-based)
approaches that operate directly on audio signals and (metadata) approaches that derive item
descriptors from external sources, e.g., web documents [70]. In recommender systems research,
as in the remainder of this chapter, both types of approaches are described as “content-based”.
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constraints and modeling assumptions of serial consumption, the evaluation criteria
and algorithmic solutions diverge substantially from the more standard techniques
found in the recommender systems literature. Section 13.5 provides an overview of
automatic playlist generation, including algorithms and evaluation methodologies.

In Sect. 13.6, we discuss common evaluation strategies, benchmarking cam-
paigns, and data sets used in music recommendation research. Finally, we conclude
by highlighting current research challenges in Sect. 13.7.

13.2 Content-Based Music Recommendation

Content information includes any information describing music items that can be
extracted from the audio signal, as well as metadata provided by external sources
(e.g., web documents, discography data, or tags). In this section, we overview
research on content-based approaches to music recommendation, and categorize the
existing approaches with respect to the employed information sources.

13.2.1 Metadata Content

Musical metadata comes in several forms, including manual annotations provided
by experts, social tags obtained from collaborative tagging services, and annotations
automatically mined from the web using text retrieval techniques. Although some
studies have demonstrated such metadata may not perform as well as collaborative
filtering techniques [54], it can be used to augment or replace collaborative filtering
in cold-start scenarios [19, 84].

13.2.1.1 Manual Annotations

Manual annotations include editorial metadata, such as musical genre and sub-
genre, record label, year and country of release, relations between artists, tracks,
and albums, as well as any other associated production information. Additionally,
annotations of musical properties such as tempo, mood, and instrumentation can be
used to provide detailed summaries of musical content.

There is a number of online databases for editorial metadata, which are built
by either music experts or moderated communities of enthusiasts. These databases
ensure a certain quality of data, but impose limitations on its structure, e.g., by
adhering to genre taxonomies [101]. MusicBrainz® and Discogs* provide extensive,

Shttp://www.musicbrainz.org.

“http://www.discogs.com.
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freely available, community-built information on artists, record labels, and their
releases. This information is related to the cultural context of music, but it omits
annotations of detailed musical properties beyond genre and musical epoch (e.g.,
90s). Although limited, editorial metadata has been used to build simple genre-
based recommenders [82], to refine audio content-based methods (e.g., [18];
cf. Sect. 13.2.2), or in hybrid recommenders (e.g., [25]; cf. Sect. 13.4).

Bogdanov et al. [19] build an artist recommender exclusively using metadata
from the Discogs database. For each artist in the database, a tag weight vector is
created by propagating genre, style, record label, country, and year information for
each release related to the artist. Relations between artists (aliases, membership in
groups) and the role of the artist in each associated release—e.g., main artist, remix-
ing/performing credits on a release, etc.—are taken into account. Artist similarity
is measured by comparing sparse tag weight vectors, which are compressed using
latent semantic analysis (LSA) [37].

Manual annotations of properties other than genre and epoch are promising,
but they are more costly, and difficult to scale to large collections. Pandora’ is an
example of a large-scale commercial recommender system using such annotations
done by experts [67]. Similarly, AlIMusic® is an example of a commercial database
that provides mood annotations in addition to general editorial metadata. However,
relatively few academic studies incorporate these manual annotations because they
are proprietary, and no public data sets of this kind (and scale) are available for
researchers. Existing work therefore resorts to individual, hand-made annotations,
for instance of genre, tempo, mood [105, 139], year [139], and emotion [81].

13.2.1.2 Social Tags

In contrast to structured taxonomy-driven expert annotations, information about
music items can be collected from social tagging services. Social tagging services
allow casual users to provide unstructured text annotations for any item. Social
tags, while inherently noisy, can draw from a larger pool of annotators, and noisy
annotations can be combined to derive a structured folksonomy of tags [135]. The
Last.fm’ music tagging service has gained some popularity in academic research
by providing open access to an extensive collection of music tags. It includes
uncategorized tags describing genres, moods, instrumentation, and locations, as
well as personal associations evoked in the users by music (e.g., favorite or seen
live) [58]. The tags can be easily obtained for particular artists or tracks, which
can be used to assess similarity between items by comparing respective tag weight
vectors [54]. Similarity comparisons can be enhanced by latent semantic analysis
techniques to overcome the problem of vector sparsity [74].

Shttp://www.pandora.com.
Shttp://www.allmusic.com.

Thttp://www.last.fm.
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13.2.1.3 Annotations by Web Content Mining

As an alternative to social tags, keyword annotations can be mined from music-
related web pages using text processing techniques. Keywords can be extracted from
web pages, blogs and RSS feeds related to music items, as well as lyrics databases.
Schedl et al. provide an overview of text mining techniques for measuring artist
similarity [123], and create a large-scale music search system which operates on an
index of artist term profiles [126]. A similar approach by Barrington et al. [140]
limits the keyword mining process to specific web sites with high-quality music
information, such as AllMusic, Wikipedia,® Amazon,” BBC,'° Billboard,'" or Pitch-
fork.'> An early study by Pazzani and Billsus [108] describes a recommendation
approach which used a naive Bayes classifier to predict user preferences from artist
keywords extracted from web pages. Green et al. [54] retrieve keywords from
Wikipedia artist entries and social tags from Last.fim. They propose to generate
recommendations based on artist-to-artist similarity, or similarity between artists
and a vector of keyword weights summarizing the user’s favorite artists. Similarly,
McFee and Lanckriet [88] combine social tags and keywords extracted from artist
biographies found on Last.fin to predict artist similarity ratings. Celma et al. [35]
extract keywords from RSS feeds related to music artists, and then generate
recommendations by ranking artists by similarity to a set of preferred artists. Finally,
Lim et al. [77] learn a song-level similarity function from topic models over bag-of-
words representations of lyrics provided by musiXmatch.com.

13.2.2 Audio Content

Audio content analysis is advocated by MIR researchers as an alternative or
complement to metadata and collaborative filtering methods [12, 29]. Recommender
systems based on audio content are not susceptible to popularity bias, and are
therefore expected to reveal the “long tail” of music consumption [31]. Music
descriptors obtained by audio signal analysis can enhance music search by enabling
novel ways for querying and interacting with music collections.

Audio content analysis can provide various types of information which can be
incorporated in recommender systems. This information can be broadly divided into
two categories: acoustic and musical features computed directly from audio, and
semantic annotations inferred or predicted from these acoustic features by machine
learning techniques.

8hitp://www.wikipedia.org.
“http://www.amazon.com.
1Ohttp://www.bbc.co.uk.
http://www.billboard.com.

2http://www.pitchforkmedia.com.
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13.2.2.1 Acoustic Features: Timbral, Temporal, and Tonal

Acoustic and musical features used by existing music recommenders include:

e timbral features, such as Mel-frequency cepstrum coefficients (MFCCs) [79, 82,
104, 147] and other features related to spectral shape of the signal [17, 32,76, 92];

e temporal and time-domain features, characterizing temporal evolution of loud-
ness and timbre [17, 76, 104, 137], rhythmic properties such as beat (tempo)
histogram features [17, 55, 76] and onset rate [17, 81], average loudness and
dynamics [17, 32];

e tonal features, such as harmonic pitch class profiles (chroma) [17, 136, 142]
or similar pitch-based features [55, 76, 81], key, scale, chords distribution, and
inharmonicity measures [17, 32, 81].

Timbral, temporal, and tonal information address different aspects of music, and can
be combined to provide a solid foundation for recommendation algorithms. How-
ever, until recently, these different approaches were rarely integrated in academic
studies.

Timbral similarity, which compares spectral shapes of the tracks, is probably the
most basic and common similarity that can be applied for audio-based music recom-
mendation. Timbre information can be represented as probability distributions of the
frame-wise MFCCs, and compared using a number of distance metrics [8, 80, 141].
In particular, Logan [79] considered average, median, and minimum MFCC-based
distance from tracks in a target music collection to the preferred tracks and a
distance to the summarized MFCC distribution of all preferred tracks. Subjective
evaluations of such MFCC-based approaches revealed only average or below-
average user satisfaction [17, 82] and suggested their insufficiency compared to
approaches with larger feature sets containing a combination of timbral, temporal,
and tonal features [17].

Some studies implement wider varieties of acoustic features and include tem-
poral and tonal dimensions of music, which may be complemented with metadata.
Pampalk et al. [103, 104] expand timbral similarity based on MFCCs [8] with
temporal information that includes fluctuation patterns and derived descriptors of
distinctiveness of the fluctuations at specific frequencies and of the overall perceived
tempo. Su et al. [137] proposed a music recommender that encodes the temporal
evolution of timbral information as time sequences of timbre clusters. The system
infers preferred and disliked sequences based on the user’s previous track ratings,
and matches the feature distribution of recommended tracks to the user’s profile.

Celma and Herrera [32] propose an approach based on Euclidean distance,
which uses timbre, dynamics, tempo, meter, thythmic patterns, tonal strength,
key, and mode information. This approach is compared to an item-based col-
laborative filtering distance using listening statistics from Last.fim. A large-scale
evaluation is conducted, the results of which suggest that the collaborative filtering
approach is better able to predict which tracks a user would like, but also produces
recommendations which are more familiar to the user. Importantly, this study
corroborates that content-based approaches can be effectively incorporated in order
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to increase novelty of recommendations without a devastating decrease in their
quality. Interestingly, average ratings were merely satisfactory: ~3.39 and ~2.87
for collaborative filtering and content-based approaches, respectively, on a 1-to-5
Likert-type liking scale.

Instead of computing similarity between music items and a user profile, some
authors propose discriminative models which use audio features to either classify
items into liked and disliked categories or predict user ratings. For example,
Grimaldi and Cunningham [55] propose a classification-based approach which uses
the tracks rated by a user as good and bad examples. The authors apply k-nearest
neighbors (k-NN) and feature sub-space ensemble classifiers to a set of temporal
features derived from beat histograms and tonal features describing harmony. They
conclude that the selected audio features are insufficient for the task, except when
user preferences are strongly driven by specific genres. Moh et al. [92] propose to
classify music into liked and disliked by using a variety of timbral features, including
MFCCs, spectral centroid/rolloff/flux, and zero crossing rate. They evaluate several
classification algorithms based on variants of support vector machines (SVMs), as
well as a probabilistic Gaussian model to predict user preference.

As an alternative to binary classification, Reed and Lee [116] propose ordinal
regression to predict ratings from audio features describing temporal evolution of
the MFCCs within each track. Bogdanov [16] investigates the importance of various
timbral, temporal, tonal, and semantic features for predicting music preferences.
To this end, regression models using these features are built for each particular user
in order to predict her ratings.

13.2.2.2 Automatic Semantic Annotation

Currently, collaborative filtering techniques tend to outperform approaches based
purely on audio [18, 32, 132]. Audio-based methods are inherently limited in that
they cannot (directly) exploit information beyond the pure signal. As a consequence,
low-level acoustic descriptors may capture information which has little direct
relation to user preference. It is thus desirable to use high-level abstractions
or semantic concepts, such as genres, moods, or instrumentation. When these
annotations are not provided by human annotators (as described in Sect. 13.2.1),
machine learning techniques can be used to predict annotations from audio content.

Bridging the so-called semantic gap [6, 33], which arises from the weak linking
between human concepts related to musical aspects and the audio-based features,
is notoriously difficult. To this end, Barrington et al. [12] propose a semantic
music similarity measure which is used for music recommendation. They train
Gaussian mixture models (GMMs) of MFCCs for a number of semantic concepts,
such as genres, moods, instrumentation, vocals, and rhythm. Thereafter, high-
level descriptors are obtained by computing the probabilities of each concept on
a frame basis. The resulting semantic annotations of tracks are represented as a
distribution over tags, and compared in order to assess similarity. Subsequent work
compares this auto-tagging approach to a similarity metric directly derived from
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MFCC distributions and finds that the direct MFCC approach is more effective
at predicting collaborative filtering similarity between tracks [84]. The authors
attribute this finding to the effect of using a fixed set of semantic concepts, which
can provide user-interpretable representations, but may prematurely discard useful
information for determining similarity. Bogdanov et al. [17] propose a similarity-
based recommendation approach grounded on an extensive set of over 60 timbral,
temporal, and tonal features together with automatic semantic annotations by genre,
mood, instrumentation, and rhythm, created by probabilistic SVMs.

13.3 Contextual Music Recommendation

The topic of context-awareness has gained popularity in recommender systems
research in recent years [1] (see Chap. 6 for an extensive review). However, the idea
of using context information in computing applications can be traced back to the
1990s. One of the first works in this area defined context as “information describing
where you are, whom you are with, and what resources are nearby” [127]. In other
words, context can be considered as any information that influences the interaction
of the user with the system. For instance, in the domain of music recommendation,
context can be the situation of the user when listening to recommended tracks (e.g.,
time, mood, current activity, the presence of other people). Clearly, such information
may influence the user’s appreciation of music and thus it could be taken into
account, in addition to the more conventional knowledge of the user’s long-term
preferences, when providing recommendations.

Various classifications of contextual information have been proposed in the
literature. Adomavicius et al. [1] distinguish between fully observable, partially
observable, and unobservable context, where unobservable context may be modeled
using latent features that influence the changes in user’s short-term preferences [56].
Dey and Abowd [38] suggest distinguishing between the primary and secondary
context. The primary context is defined as the user’s location, identity, activity, and
time. The authors argue that these four factors are the most important ones when
characterizing a user’s situation. The secondary context is defined as additional
information which can be derived from the primary context factors. For instance,
the current weather conditions may be derived from the user’s location and time.

In this section, we categorize context information into two general classes—
environment-related context, which consists of features that can be measured by
sensors on the user’s mobile device or obtained from external information services
e.g., the user’s location, current time, weather, temperature, etc., and user-related
context, which is difficult to measure directly and represents a more high-level
information about the user e.g., the user’s activity, emotional state, or social
environment. Similarly to the relation between primary and secondary context
defined by Dey and Abowd [38], environment-related context may be used to derive
the user-related context.
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13.3.1 Environment-Related Context

A user’s environment, such as season, temperature, time of day, noise level,
weather conditions, etc., has an influence on the user’s state of mind, and therefore
indirectly influences her musical preferences. Research has shown that there exists
a correlation between characteristics of the listening situation and the preference for
music that augments these characteristics [96]. For instance, people tend to prefer
different types of music in summer and in winter [109]. Consequently, it may be
beneficial to consider environment-related context attributes when recommending
music content. Such attributes used in music recommendation research can be
classified into the following groups:

e Location of the user can be represented by a ZIP code, geographical coordinates,
type of landscape (e.g., city, nature), nearby monuments, buildings, landmarks,
etc. The surroundings of the user may have a strong impact on her perception
and preferences of music. The US music duo Bluebrain is the first band to
record a location-aware album.!? In 2011, the band released two such albums—
one dedicated to Washington’s park National Mall, and the second dedicated
to New York’s Central Park. Both albums were released as iPhone apps, with
music tracks pre-recorded for specific zones in the parks. As the listener moves
through the landscape, the tracks change through smooth transitions, providing
a soundtrack to the walk. Despite the large potential of location-aware music
services, up to date there has been little research exploring location-related
context information in music recommendations.

e Time information may refer to the time of day (typically categorized into
morning, afternoon, evening, night), or day of week (can be represented by
the exact day or can be categorized into working day, weekend). This kind
of information is potentially useful since studies have shown that user’s music
preferences differ depending on the day of the week or moment of the day [60].

»  Weather information may refer to weather conditions (typically categorized into
sunny, overcast, rainy, etc.), to the temperature (e.g., cold, moderate, hot), or to
the season. Such information is relevant for music recommendation since the
user’s music preferences may significantly differ, e.g., in a cold rainy autumn or
a hot sunny midsummer [109].

e Other factors such as information about the traffic conditions, the noise level,
or the amount of ambient light may contribute to the user’s state of mind and
therefore indirectly influence her music preferences.

One of the first music recommenders to exploit environment-related context
was described by Reddy and Mascia [115]. The authors used information about
the user’s location (represented by a ZIP code), time of day (morning, afternoon,
evening, night), day of week, noise level (calm, moderate, chaotic), temperature

Bhttp://bluebrainmusic.blogspot.com/.
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(frigid, cold, moderate, warm, hot), and weather (rainy, snow, haze, cloudy, sunny,
clear). The described system is capable of recommending songs from the user’s
music library which have to be tagged using a controlled tag vocabulary, where the
tags directly represent the values of context attributes. For instance, to recommend
a song for a particular location, it has to be tagged with the appropriate ZIP code.

Ankolekar and Sandholm [5] presented a mobile audio application, Foxtrot, that
allows its users to explicitly assign audio content to a particular location. The
authors stressed the importance of the emotional link between music and location.
According to the authors, the primary goal of their system is to “enhance the
sense of being in a place” by creating its emotional atmosphere. Foxtrot relies on
crowd-sourcing—the users of Foxtrot are allowed to assign audio pieces (either a
music track or a sound clip) to specific locations (represented by the geographical
coordinates of the user’s current location), and also specify the visibility range of
the audio track—a circular area within which the track is relevant. The system is
then able to provide a stream of location-aware audio content to the users.

Braunhofer et al. [24] explored the possibilities to adapt music to the places of
interest (POIs) that the user is visiting. This idea is based on the hypothesis that a
fitting music track may enhance the sightseeing experience of the user. For instance,
during a visit to a Baroque cathedral a user might enjoy hearing a composition by
Bach, while the narrow streets in Venice offer a good surrounding to listen to a
Vivaldi’s concerto. The matching of music and POIs was made by representing both
music tracks and POIs with a common set of emotion tags, motivated by music
perception research [148]. In a related research, Ferndndez-Tobias et al. [47] have
developed a technique to recommend music content related to POIs using explicit
knowledge about musicians and POIs extracted from DBpedia'* [9]. The tag-
based [24] and knowledge-based [47] techniques have been combined and evaluated
in a web-based user study [68].

Okada et al. [98] describe a mobile music recommender and define context as “a
finite set of sensed conditions collected from a mobile device”, in other words, the
authors focus on environment-related context information: ambient noise, location
(represented by geographical coordinates), time of day, and day of week. The
authors do not provide a detailed technical description of the recommendation
algorithm (i.e., how exactly context is used to select music), but rather focus on
the architectural design and usability principles of a context-aware mobile music
recommender. The authors describe a user study which shows an overall positive
evaluation of the system. However, user feedback suggests the need for explanations
of the recommendations and more control over the played songs. This leads to an
important research question—how to integrate the features of a regular music player
and a context-aware recommender.

Yhttp://www.dbpedia.org.
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13.3.2 User-Related Context

Any contextual information related to the user may be important when recom-
mending music, since music preferences are linked to people’s activities, emotions,
or social background. Schifer and Sedlmeier [118] observe different uses of
music to serve listeners’ needs, such as the ones related to cognitive, emotional,
socio-cultural, and physiological functions. The user-related context used in music
recommendation research can be classified into the following groups:

e Activity information includes an action, typically represented as an element from
the set of possible actions (e.g., walking, running, driving), or a numerical
attribute defining the user’s state (e.g., walking pace or heart rate). This type
of context has been shown to have an impact on the user’s musical preferences.
Foley [52] has shown that people prefer different musical tempo depending on
their occupation. North and Hargreaves [97] related personality traits and social
lifestyles to music preferences.

e Emotional state or mood has a direct influence on the user’s music preferences.
For example, a user may wish to listen to different types of music when in a sad
mood compared to when being happy. Research has shown that music can be
used both to moderate the user’s emotional condition [72, 118] and to augment
the emotions perceived by the listener [96].

e Social context information, i.e., the presence of other people, may influence
user’s music preferences. For instance, people may choose music taking into
account the preferences of their companions. Several works have addressed the
issue of generating music playlists for groups of users [10, 113]. Mesnage [90]
exploited user relations in social networks for music discovery.

e Cultural context is closely related to environment-related context (location),
however, it defines a more high-level information, e.g., the user’s cultural back-
ground or belonging to an ethnic group. Koenigstein et al. [71] have exploited
the activity of US-based users in peer-to-peer networks to predict the popularity
of music tracks in US song charts. Schedl [121] used geo-tagged tweets to
extract location-based music listening trends and in turn build a location-aware
recommender system.

Compared to the environment-related context, user-related context is difficult to
measure directly using mobile sensors or external information services. However, it
can be derived to some extent from the environment-related context attributes. For
instance, such context attributes as the time of day, ambient noise level, temperature,
weather, etc., were used in Bayesian classifiers to predict the user’s emotional
state [105] or activity [142].

Emotional state of the user is a particularly popular type of context information,
which can be exploited to create emotion-based music recommenders, such as Musi-
covery." In addition to adapting music to the user’s mood, emotions have been used

Shttp://www.musicovery.com.
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to match music with other types of content that can cause an emotional response in
users, e.g., text or images [28, 75, 136]. Emotion-based music recommendation is
becoming an increasingly popular topic, largely due to advances in automatic music
emotion recognition [146].

13.3.3 Incorporating Context Information in Music
Recommender Systems

Having described the main types of context information exploited in music rec-
ommender systems, we now turn to the major challenge of designing a context-
aware recommender—incorporating context information in the recommendation
algorithm. Chapter 6 provides a detailed discussion on the paradigms for incor-
porating context in recommender systems. We therefore refer the reader to the
aforementioned chapter for an in-depth discussion on this topic, and here provide
only a brief overview of techniques for exploiting context in music recommenders.

Context is known to have an effect on user preferences and information needs [1].
To exploit this information when recommending music, one must establish a degree
of relevance between a music track and the contextual information. This information
may be obtained on a per user level, e.g., by having users rate music in a particular
situation defined by the context attributes, or it can be established globally, by
obtaining a relatedness score between a music track and a context attribute. The
relevance of particular contextual attributes for music tracks can then be exploited
in a recommendation algorithm.

We define four types of approaches to establish a degree of relevance between a
music piece and contextual information, as shown in Fig. 13.1:

1. Rating music in context [11, 105] is an extension of the classical collaborative
filtering approach. While suffering from the cold-start problem, this is still the
state of the art when designing context-aware recommender systems [1].

2. Mapping low-level music features to context attributes [142] is an approach
based on machine learning techniques and is closely related to music information
retrieval [30] since it involves audio signal analysis. This approach needs training
data of music labeled with appropriate context values.

3. Direct labeling of music with context attributes [5, 115] is the most straight-
forward approach, whose main disadvantage is the high effort required to label
music tracks, similarly to rating music in context.

4. Predicting an intermediate context, such as the user’s activity [142] or emo-
tional state [24, 105]. This type of approach incorporates the aforementioned
techniques—rating in context [105], mapping low-level music features to con-
text [68, 142], or manual labeling of music with context attributes [24].

In summary, context represents an important source of information which can
be combined with other sources, such as music content features or user ratings, to
provide highly personalized and adaptive music services. Recommender systems



13 Music Recommender Systems 465

ﬁrﬁﬁg
Music /H \ Context l&

J‘\@
Fig. 13.1 The different types of approaches to establish the relevance of contextual attributes for
music

that combine these different sources of information are called hybrid systems. In
the next section, we provide a detailed description of hybrid music recommendation
and give more details on works that incorporate context information into recom-
mendation algorithms.

13.4 Hybrid Music Recommendation

Since music preference is a complex and multi-faceted concept, it is a logical
step to incorporate multiple aspects of musical similarity into recommendation.
In the preceding sections, we have discussed different approaches to describe the
contents of music and to exploit the context of music consumption. In this section,
we discuss hybrid music recommenders, i.e., systems that “combine two or more
recommendation techniques to gain better performance with fewer of the drawbacks
of any individual one” [26]. Before reviewing approaches that integrate different
sources, let us briefly reconsider properties of the individual sources used for music
recommendation and the entailed advantages and disadvantages.

Like in every other domain, recommendation approaches built upon implicit or
explicit user feedback have to deal with the common problems of data sparsity and
in particular the cold-start problem. To some extent, this is the same with content-
based approaches that rely on external sources for item description. Regardless
of whether the content source is editorial metadata, text from the web, or social
tags, one or more humans must first create the underlying data. Thus, both of these
approaches also exhibit popularity biases in that wider-known items are more likely
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to have information related to them. By relying on human-crafted data, metadata
methods are also susceptible to attacks, vandalism, and manipulation [34, 91]. Even
putting aside potential malicious influence, web-based approaches must contend
with a great deal of noise in the data. Manual expert annotations, on the other hand,
are accurate, but prohibitively costly to scale to large collections [138]. Context
features inherently derive from end-users, and are therefore the most difficult to
obtain (in academic settings) and typically noisy.

Depending on the type of integration, context-aware recommendation can
additionally amplify the problem of data sparsity [1]. Conversely, content-based
approaches that extract information directly from the audio signal do not suffer
from these problems. Signal-based features provide a static description that can
be used for unbiased and time-independent similarity calculation. However, audio
content methods have drawbacks as well, such as computational overhead and
the requirement of access to the music signal. Moreover, audio content methods
are usually outperformed by collaborative filtering and methods that exploit user-
generated data [132].

In general, any combination of two or more approaches can be considered a
hybrid. For instance, in Sect. 13.2, we described work that combines different types
of content-based recommendation. Other approaches combine different aspects of
collaborative filtering, such as the Auralist framework, which aims at improving
user satisfaction by providing diverse and novel recommendations [149]. In the
remainder of this section, we focus on work that combines different techniques and
information from different sources.

13.4.1 Combining Content with Context Descriptors

To date, there are relatively few methods which combine music content and
user context. Schedl [120] presents the Mobile Music Genius (MMG) player,
which gathers a wide range of user-context attributes during music playback, e.g.,
time, location, weather, device- and phone-related features (music volume), tasks
(running on the device), network, ambient (light, proximity, pressure, noise), motion
(accelerometers, orientation), and player-related features (repeat, shuffle, sound
effects). MMG then learns relations (using a C4.5 decision tree learner) between
these ~100-dimensional feature vectors and metadata (genre, artist, and track are
considered), and uses these learned relations to adapt the playlist on the fly when
the user’s context changes by a certain amount.

Elliott and Tomlinson [45] focus on the particular activities of walking and
running. The authors present a system that adapts music to the user’s pace by
matching the beats per minute of music tracks with the user’s steps per minute.
Additionally, the system uses implicit feedback by estimating the likelihood of a
song being played based on the number of times the user has previously skipped the
song. In similar research, de Oliveira and Oliver [99] compare the user’s heart rate
and steps per minute with music tempo to moderate the intensity of a workout.
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Park et al. [105] model a number of context attributes—temperature, humidity,
noise, light level, weather, season, and time of day—with Bayesian networks to infer
the emotional state of the user: depressing, content, exuberant, or anxious/frantic.
The music tracks used in the described system are represented by genre, tempo,
and mood attributes. In order to recommend music for the emotional states, users
must explicitly express their preferences for each music attribute in every emotional
state using a 5-point rating scale. For instance, a user may state that she prefers rock
music with a preference rating of 4 in a depressing state, 3 in a content state, and 2
in an exuberant state.

More recently, Wang et al. [142] described a mobile music recommender where
the time of day, accelerometer data, and ambient noise are used to predict the user’s
activity—running, walking, sleeping, working, or shopping. To recommend music
for the user’s activity context, music tracks had to be labeled with the appropriate
activity labels. The authors use a data set of 1200 songs manually labeled with
activity values and represented by low-level audio feature vectors for training an
auto-tagging algorithm [13].

13.4.2 Combining Collaborative Filtering with Content
Descriptors

Collaborative filtering and content descriptors, in particular those extracted from the
audio signal, exhibit complementary features. A combination of the two is expected
to improve recommendation quality for the following reasons, cf. [26, 27,31, 41]:

* Avoiding cold-start problems: While new items are lacking preference data, audio
content analysis and comparison to all existing items can be performed instantly.
Thus, when no user feedback is available, a hybrid system could resort to audio
similarity for recommendation.

* Avoiding popularity biases: Preference data, as well as content metadata, may
be focused on popular items only, whereas audio-based information is available
uniformly. Including objective content descriptors can remove recommendation
biases.

* Increasing novelty and diversity: Popularity biases can result in a limited range
of recommended items, whereas audio-based approaches are agnostic to whether
music is a hit or from the long tail. Therefore, new and lesser known items are
more likely to be recommended when both sources are exploited.

» Combining information on usage with musical knowledge: Recommendation
in the multi-faceted domain of music should benefit from the incorporation of
sources reflecting different aspects of music perception.

A straightforward approach to incorporating both preference and content
information is to create independent recommenders and combine their outputs
using a meta-classifier (ensemble learning). Following this direction, Tiemann
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and Pauws [139] implement an item-based collaborative filtering recommender
as well as a content-based recommender that integrates timbre, tempo, genre,
mood, and release year features. Both recommenders predict ratings as weighted
combinations of the most similar items’ ratings. For the final rating prediction,
the feature vectors constructed from the individual recommenders’ predictions
are compared to the output vectors from the learning phase using Euclidean
distance and the rating of the most similar vector is predicted. The idea of fusing
outputs of multiple recommenders is also applied by Lu and Tseng [81], who
combine three rankings, namely a ranking according to content similarity based
on features extracted from the musical score, a ranking according to user-based
collaborative filtering over a data set of user surveys, and an emotion-based ranking
in accordance with manual emotion annotations by an expert. In the combination
step, a personalization component is introduced. This component reweights the
individual rankings according to user feedback gathered in an initial survey in
which users specified preference assessments (likes/dislikes) and the underlying
reasons (such as preference by tonality, rhythm, etc.) for a sample of tracks.

Instead of fusing multiple outputs in a late stage, preference and content can
be integrated earlier, for instance to generate a new set of multi-modal features
or to adapt similarity measures. The challenge is to combine sources in a manner
that avoids the individual drawbacks rather than propagating them. For instance, a
simple feature concatenation or unsupervised linear combination can easily preserve
the data sparsity problems of preference-based approaches [130].

McFee et al. [84] optimize a content-based similarity metric by learning from
a sample of collaborative data. First, a codebook representation of delta-MFCCs is
learned to represent songs as a histogram over the derived codewords. Applying
metric learning to rank, the resulting feature space is optimized to reflect item
similarity according to implicit feedback, i.e., listening histories of users. This
allows to find similar items even for novel and unpopular items based on audio
content, while maintaining high recommendation accuracy resulting from feedback
data.

Van den Oord et al. [100] follow this general direction, but exploit latent
space descriptions of both audio features and implicit feedback (song play counts).
First, a weighted matrix factorization algorithm [62] is used to learn latent factor
representations of users and songs from usage data. Second, log-compressed Mel-
spectrograms of randomly sampled 3-second-windows from the songs are presented
to a convolutional neural network [61], preserving temporal relations in music to
some extent. Here, the latent factor vectors obtained from the weighted matrix
factorization step serve as ground truth to train the network. It is shown that this
latent factor modeling of audio optimized for latent factor information on usage
outperforms traditional MFCC-based vector quantization methods using linear
regression or a multi-layer perceptron for latent factor prediction, as well as the
metric learning to rank method by McFee et al.

For integrating heterogeneous data into a single, unified, multi-modal similarity
space, McFee and Lanckriet [88] propose a multiple kernel learning technique. They
demonstrate the applicability of their technique on a music similarity task on the
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artist level by including five data sources representing different aspects of an artist,
namely artist timbre (modeled over all delta-MFCCs extracted from all songs by
the artist), auto-tags, social tags, biographical text, and collaborative filtering data.
Comparing the unified similarity space with individual similarity spaces (and partial
combinations) against a human-annotated ground truth shows that the multiple
kernel learning technique outperforms an unweighted combination of individual
kernels. It can also be seen that the timbre similarity performs poorly (potentially
since it is originally targeting the song level rather that the artist level) and that social
tags contribute the most valuable information.

Another group of hybrid music recommenders combines user feedback and
content information by means of a probabilistic framework. Li et al. [76] propose a
probabilistic model in which music tracks are pre-classified into groups by means
of both audio content (timbral, temporal, and tonal features) and user ratings.
Predictions are made for users considering the Gaussian distribution of user ratings
given the probability that a user belongs to a group Yoshii et al. [147] propose a
hybrid probabilistic model, in which each music track is represented as a vector
of weights of timbres (a “bag-of-timbres”), i.e., as a GMM over MFCCs. Each
Gaussian corresponds to a single timbre. The Gaussian components are chosen
universally across tracks, being predefined on a certain music collection. Ratings
and “bags-of-timbres” are associated with latent variables, conceptually correspond-
ing to genres, and music preferences of a particular listener can be represented in
terms of proportions of the genres. A three-way aspect model (a Bayes network) is
proposed for this mapping, with the idea that a user stochastically chooses a genre
according to her/his preference, and then the genre stochastically “generates” pieces
and timbres.

Several approaches follow a graph-based interpretation of musical relations to
integrate different sources. In the resulting models, the vertices correspond to the
songs, and the edge weights correspond to the degree of similarity. Shao et al. [130]
build such a model upon a hybrid similarity measure that automatically re-weights a
variety of audio descriptors in order to optimally reflect user preference. On the
resulting song graph, rating prediction is treated as an iterative propagation of
ratings from rated data to unrated data.

Multiple dimensions of similarity can be expressed simultaneously using a
hypergraph—a generalization in which “hyperedges” can connect arbitrary subsets
of vertices. Bu et al. [25] compute a hybrid distance from a hypergraph which
contains MFCC-based similarities between tracks, user similarities according to
collaborative filtering of listening behavior from Last.fm, and similarities on the
graph of Last.fimm users, groups, tags, tracks, albums, and artists, i.e., all possible
interactions that can be crawled from Last.fm. The proposed approach is compared
with user-based collaborative filtering, a content-based timbral approach, and their
hybrid combination, on a listening behavior data set. Again, the performance of a
timbral approach fell behind the ones working with collaborative filtering, while
incorporation of all types of information showed the best results.

McFee and Lanckriet [87] build a hypergraph on a wide range of music
descriptors to model and, subsequently, generate playlists by performing random
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walks on the hypergraph (cf. Sect. 13.5). Hypergraph edges are defined to reflect
subsets of songs that are similar in some respect. The different modes of similarity
are derived from the Million Song Dataset (MSD, cf. Sect. 13.6.3), and include:

* Collaborative filtering similarity: connects all songs via an edge that are assigned
to the same cluster after k-means clustering for k = {16, 64,256} on a low-rank
factorization of the user-song matrix;

e Low-level acoustic similarity: connects all songs assigned to the same cluster
after k-means clustering for k = {16, 64,256} on audio features;

*  Musical era: connects songs from the same year or same decade;

e Familiarity: connects songs with the same level of popularity (expressed in the
categories low, medium, and high);

e Lyrics: connects songs assigned to the same topic derived via latent Dirichlet
allocation (LDA) [15];

* Social tags: connects songs assigned to the same Last.fin tag;

e Pairwise feature conjunctions: creates a category for any pairwise intersection of
the described features and connects songs that match both;

e Uniform shuffle: an edge connecting all songs in case no other transition is
possible.

The weights of the hypergraph are learned using the AorM-2011 data set, a collection
of over 100,000 unique playlists crawled from Azt of the Mix'® (cf. Sect. 13.6.6).
In addition to playlist information, this data set also contains a timestamp and
a categorical label, such as romantic or reggae, for each playlist. Experiments
on a global hypergraph with weights learned from all playlists and on category-
specific hypergraphs trained only on the corresponding subsets of playlists show
that performance can be improved when treating specific categories individually
(“playlist dialects”). In terms of features, again, social tags have the most significant
impact on the overall model, however audio features are more relevant for specific
categories such as hip hop, jazz, and blues, whereas lyrics features receive stronger
weights for categories like folk and narrative.

The category labels of the AotM-2011 data set exhibit further interesting aspects.
While most labels refer to genre categories, some refer to a usage scenario or the
user-related context of a playlist. We discuss these aspects next.

13.4.3 Combining Collaborative Filtering with Context
Descriptors

In this section, we review hybrid approaches that incorporate models of user
preference and user-related context. As discussed in the previous section, the
method proposed by McFee and Lanckriet [87] uses different recommenders for

1%http://www.artofthemix.org.
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different categories, some of which refer to a user’s activity (road trip, sleep),
emotional state (depression), or social situation (break up). The results indicate
that the influence of different aspects of musical content can vary dramatically,
depending on contextual factors.

The approach by Baltrunas et al. [11] to recommend driving music takes
advantage of ratings specifically assigned to each contextual condition (context-
aware collaborative filtering [1], cf. Sect. 13.3.2). For incorporating environmental
(such as rraffic and weather) and user-related factors (such as mood and sleepiness)
into rating prediction, they extend a matrix factorization approach to collaborative
filtering by introducing one additional parameter for each pair-wise combination of
contextual condition and musical genre to the model. The parameters of the model
are then learned using stochastic gradient descent. It is shown that mean absolute
error (MAE) decreases when incorporating contextual factors.

Typically, the user-related context is not explicitly available in the observed
data. In such cases, hidden context can be modeled by latent factor techniques.
Hariri et al. [56] propose a method to apply sequential pattern mining on an
LDA model of playlists from Art of the Mix, in which songs are represented
by social tags from Last.fimm. While the LDA topics should reflect the contextual
factors affecting listening preference—e.g., mood or social setting—sequential
pattern mining should capture changes in context over time. Predictions of the
listener’s current context then provide the additional information to build a context-
aware music recommender. Hariri et al. show that the LDA-based context-aware
recommender significantly outperforms a simple metadata-based recommendation
approach.

Taking a similar approach, Zheleva et al. [150] also apply LDA to a set of
listening histories extracted from usage logs of the Zune Social platform!” over a
period of 14 weeks. They compare two approaches. The first, called taste model,
is a direct application of the LDA method developed for text collections and thus
refers to overall factors of listening preference. The second, called session model,
incorporates additional information about listening sessions and aims at capturing
latent factors related to mood in a more consistent listening context. Evaluation
of the approaches is carried out on the genre level, i.e., instead of predicting
individual songs or specific artists, a recommendation consists of a distribution
of genres. Furthermore, the discovered taste topics are compared to genres within
the two-leveled Zune Social genre taxonomy. Evaluation indicates that the context-
aware session model is more effective than the time-agnostic taste model. Yang
et al. [145] investigate “local preferences,” i.e., temporal aspects on a smaller and
more consistent time scale. These preferences reflect changes in listening behavior
that are strongly influenced by the listening context and occurring events rather than
caused by a gradual change in general taste.

The impact of the temporal context is not limited to listening sessions. Temporal
information is also helpful for modeling long-term patterns in listening behavior

7http://zune.net; now Xbox Music.
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and song life cycles. Dror et al. [43] show that matrix factorization models for
music rating prediction can successfully incorporate additional information such
as temporal dynamics in listening behavior, temporal dynamics in item histories,
and multi-level taxonomy information like genre. Aizenberg et al. [3] apply
collaborative filtering methods to the playlists of radio stations associated with the
web radio station directory ShoutCast.'"® Their goals include prediction of existing
radio station programs, as well as predicting the programs of new radio stations.
To this end, they model latent factor station affinities as well as temporal effects.
We discuss the specifics of sequential recommendation in greater detail in the next
section.

13.5 Automatic Playlist Generation

One of the key distinguishing features of music, as compared to other item domains
such as books or movies, is that recommendations are often consumed in rapid
succession during a listening session. Rather than selecting each song individually, a
sequence of songs—a playlist—can be automatically generated, and the user would
consume the sequence much as if it was a traditional radio broadcast. Automatic
playlist generation thus forms a critical component of personalized streaming radio
services and portable music devices.

Because the user does not explicitly select or provide feedback for each song in
a playlist, the modeling assumptions and evaluation criteria can differ from those
of traditional recommender systems (Sect. 8). In this section, we survey evaluation
methodologies and algorithmic approaches for automatic playlist generation.

13.5.1 Parallel and Serial Consumption

In most typical recommendation models, the user is first provided with a set of
candidate items from which to choose, for example, a page of movie recommenda-
tions. The user may then inspect each candidate item before making a selection: in
effect, the user can access the candidate recommendations in parallel. The selection
process may be assisted by presenting the user with a brief summary of each item,
such as a star rating, plot synopsis, or capsule review. This approach works well for
browsing scenarios in which the user is actively engaged and selecting each item
individually.

Unlike browsing a collection, playlist consumption is an inherently serial
process: only one song is consumed at a time, and the user does not select from
a set of alternatives. Typical playlist consumption interfaces mimic conventional

http://www.shoutcast.com.
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radio or personal music devices, potentially augmented with a limited set of familiar
controls, such as skip, stop, or pause. Because the mode of consumption differs from
that of browsing, the semantics and availability of user feedback differ as well. The
semantics of explicit per-song feedback are straightforward, but events may be rare
due to user disengagement (passive consumption) or fatigue due to consuming a
large number of songs in rapid succession.

Implicit feedback can be somewhat more problematic. If a song plays to
completion, it may be interpreted as implicit positive feedback, but it is also possible
that the user has become disengaged—e.g., by reducing the volume or wandering
away—and there is often no way to infer this behavior directly. Negative feedback,
on the other hand, must derive from an explicit user action, such as clicking a “stop”
or “skip” button [64, 104]. However, as noted by Bosteels et al. [23], great care must
be taken when inferring intent from a user’s intent action: the user may in fact dislike
the recommended song, or she may simply not wish to hear it at that moment due to
otherwise obscure contextual factors.

13.5.2 Playlist Evaluation

Sequential playlist consumption differs from traditional recommender system and
information retrieval settings, and consequently, several methods have been pro-
posed to evaluate playlist generation algorithms. Because the choice of evaluation
criteria influences algorithm design, we first provide a survey of evaluation tech-
niques. At a high level, these techniques fall into four categories which we survey
in this section: user studies, semantic cohesion, partial playlist prediction, and
generative likelihood.

13.5.2.1 User Studies

Early approaches to evaluating automatic playlist generation systems relied upon
user studies. For example, Pauws and Eggen [106] conducted a study in which users
were asked to provide a seed song in response to a pre-selected contextual query
(e.g., lively music), which was then used to seed a playlist generation algorithm.
Each user then rated the resulting playlist on a scale of 1-10. Later studies followed
this general approach by soliciting users for ratings of playlist consistency [111]
and similarity to the seed song [20]. Alternatively, Barrington et al. [12] conducted
a survey in which users were provided with a seed song and playlists generated
by two competing systems, and asked for relative preference of one playlist or the
other.

While user studies provide high-quality information, they are notoriously dif-
ficult to reproduce, and they do not provide a viable means of automatically
evaluating algorithms in a laboratory setting. User evaluation is also difficult to
scale to large collections, as the search space of playlists grows exponentially with
the number of songs in the collection.
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13.5.2.2 Semantic Cohesion

A commonly used alternative to user-centric evaluation is to measure some notion of
cohesion over the songs within a playlist. This general strategy is usually applied to
song-level metadata, for example, by counting the fraction of songs in the playlist by
the same artist [78], or measuring the entropy of the playlist’s genre distribution [42,
69, 111]. In cohesion-based playlist evaluation, the metadata in question is obscured
from the playlist generation algorithm.

The main drawback of cohesion-based evaluation is that it is essentially user-
agnostic, so one cannot directly conclude that an algorithm which produces cohesive
playlists will also produce satisfactory recommendations to users. On the contrary,
a study conducted by Slaney and White [133] provides evidence that users prefer
some degree of diversity in playlists.

13.5.2.3 Partial Playlist Prediction

Rather than evaluate each automatically generated playlist, some authors have
evaluated their algorithm’s ability to predict the hidden songs in pre-existing
playlists from a partial observation. Platt et al. [110] gather a collection of user-
generated playlists over a fixed library of songs. For each playlist in the collection,
the algorithm is given as input a partial observation of the constituent songs, and as
output, produces a ranking over the remaining songs in the library. The algorithm
is then evaluated according to the position within the predicted ranking of the
remaining songs in the playlist.

Maillet et al. [83] conduct a similar experiment, in which playlists are collected
by mining the playback logs of terrestrial broadcast radio stations. Their evaluation
methodology is similar to that of Platt et al., except that the partial observations are
restricted to immediately preceding song(s), rather than arbitrary partial observa-
tions.

Partial prediction evaluation is similar to ranking-based evaluations commonly
used in general implicit-feedback collaborative filtering problems [63, 117]. One
key distinction, however, is that associations are measured between playlists and
songs, not users and songs. Because playlists tend to be much shorter than a
user’s full listening history, the associations tend to be sparse when compared to
a full collaborative filter (see Fig. 13.2). As noted by Platt et al., the sparsity of
observations, coupled with the general lack of strong negative feedback, tends to
result in an overly pessimistic evaluation [110].

13.5.2.4 Generative Likelihood

The final approach to playlist evaluation is borrowed from the statistical natural
language processing community. McFee and Lanckriet [86] argue that because
many practical playlist generation algorithms are stochastic, they induce probability
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Fig. 13.2 The empirical cumulative distribution function (CDF) of the number of songs in user-
generated playlists (solid line), and in a user’s listening history (dashed line). Playlists were
gathered from the Art of the Mix (AotM-2011) corpus, which includes approximately 10° unique
playlists [87]. Listening histories were gathered from the Million Song Dataset Challenge (MSDC)
training set, which contains listening histories for approximately 10° users [85]. Ninety-five percent
of playlists contain 30 or fewer songs, indicating a high degree of sparsity in the observations. Note
that these sets do not span the same user base

distributions over playlists. The induced distribution can thus be interpreted as
model of the data (sample playlists), and evaluated in a similar fashion to a natural
language model. Concretely, the algorithm is scored according to the likelihood of
a test collection of playlists under its corresponding distribution.

In practice, the generative likelihood approach requires a large test corpus of sam-
ple playlists. Test corpora can be formed from user-constructed playlists [86, 87], or
broadcast or streaming radio logs [93, 94]. However, when evaluating on historical
data, rather than intentionally constructed playlists, one must be aware that the data
itself may have been generated by an automated process.

The generative likelihood approach only applies to algorithms for which a
sample playlist’s likelihood can be computed. While this includes broad families
of algorithms, such as Markov processes [86], it rules out direct comparisons
to deterministic algorithms and black-box methods, e.g., existing streaming radio
services. However, the generative likelihood approach does provide a consistent
evaluation framework, and a meaningful objective function for designing and
optimizing playlist generation algorithms.

13.5.3 Playlist Generation Algorithms

A wide range of algorithmic techniques have been proposed for automatic playlist
generation. Most techniques fall into one of three categories, which we survey here.
Constraint satisfaction methods attempt to construct a playlist which satisfies some
user-specified search criteria. Similarity heuristic methods build playlists by finding
songs which are in some way similar to a query or seed song. Finally, machine
learning approaches can be used to optimize model parameters over a training set
of example playlists.
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13.5.3.1 Constraint Satisfaction

Early research into automatic playlist generation algorithms primarily focused on
combinatorial methods. Common formulations of the playlist generation problem
required the user to encode her query in the form of a set of constraints which must
be satisfied by the generated playlist [4, 7, 102, 107]. Usually, constraints would be
applied to metadata associated with each song (e.g., genre or year of release), or
audio content analysis (e.g., track duration or tempo). Pauws et al. [107] identify
several types of constraints, including unary (e.g., “each song must be of the jazz
genre”), binary (e.g., “adjacent songs must have similar loudness”), and global (e.g.,
“total duration less than 60 minutes”).

Research on constraint-based playlist generation has tailed off in recent years
due to several practical limitations. First, constraint satisfaction problems tend to be
computationally intractable even for relatively small personal collections, making
them unattractive for large-scale applications [7]. Second, because constraint
satisfaction is a feasibility problem, and not an optimization problem, there is no
explicit notion of preference between two satisfactory playlists. Consequently, it
may take multiple interactive refinements before the user is satisfied with the recom-
mendations [106]. Finally, constraint generation can be a difficult task for users who
may lack the technical sophistication to clearly express their preferences. However,
it should be noted that constraint satisfaction forms a necessary component of
automatic playlist generators for broadcast radio and streaming services, which may
be required by law to conform to certain regulations [48, Sect. 2.7.3].

13.5.3.2 Similarity Heuristics

As an alternative to the query-by-constraint formulations described above, several
researchers have proposed methods which allow the user to formulate a query in the
form of one or more seed songs. Playlists may then be composed by selecting songs
which are in some way similar to the seed.

The underlying notion of similarity between songs ultimately determines the
song selection, and many different approaches have been proposed in the literature.
Most commonly, song similarity is determined by acoustic content features, such
as MFCCs, rhythmic descriptors, or automatic semantic annotations [12, 20, 42, 51,
78, 104, 112]. Alternative methods of computing similarity between songs include
metadata (e.g., genre or mood) [110], proximity of artists in a social network [49],
or textual similarity extracted from web documents [69].

Given one or more seed songs and a song-level similarity function, several
methods have been proposed to generate a playlist. In the simplest form, the
playlist is constructed by ranking songs by similarity to the seed(s) [12, 78, 110].
More sophisticated approaches construct a graph over songs, and use path-finding
algorithms to navigate between seeds, such as shortest path [51], network flow [49],
and traveling salesman [69, 112].



13 Music Recommender Systems 477

13.5.3.3 Machine Learning Approaches

In each of the similarity-based examples above, the notion of similarity between
songs is fixed a priori, and is not informed by user activity. However, most recent
techniques use some form of machine learning to optimize model parameters from
a training set of playlists.

The algorithm proposed by Ragno et al. [114] generates playlists by performing
random walks on an undirected graph where edge weights are determined by
co-occurrence of songs within training playlists. By relying strictly on playlist co-
occurrence, the algorithm is implicitly constrained to only reproduce previously
observed sequences. Other authors proposed methods which incorporate tag-based
similarity [23], latent topic assignment sequences [56], or combine popularity with
artist-level co-occurrence [22] to allow the algorithm to generalize and produce
novel sequences.

The above methods use co-occurrence frequency counts to inform song selection,
but they are not explicitly optimized for playlist prediction. Maillet et al. [83]
propose a method to train a classifier to predict from acoustic features whether an
ordered pair of songs form a bigram in observed playlists. By keeping the first song
fixed, the classifier’s output can be used to induce a ranking over the remaining
songs in the library, from which the next song is selected. The proposed method
also incorporates direct user feedback by using a weighted tag cloud to reorder the
candidate selections. Because the method uses a discriminative classifier, the authors
synthesized “negative” training example bigrams by random sampling.

Recently, generative modeling has emerged as a versatile framework for devel-
oping playlist generation algorithms. In this view, playlists are generated by
sampling sequences from a probability distribution whose parameters are fit to a
training sample. This approach lends itself well to generative likelihood evaluation
(Sect. 13.5.2.4), as the training and testing criteria match exactly. Existing models
in the literature exhibit a range of scale and complexity, including latent topic
models [150], low-dimensional song embedding [93], co-embedding of songs and
users [94], Markov chain mixtures [86], and cross-modal feature integration [87].

13.6 Data Sets and Evaluation

In this section, we give an overview of frequently used data sets and prominent
evaluation campaigns in MIR and music recommendation. In cases where data sets
were specifically created for the purpose of running an evaluation campaign we
discuss them together.

A comparative overview of data sets is given in Tables 13.1 and 13.2. The former
lists statistics of the data sets and the type(s) of editorial metadata included, while
the latter details the kind of data that is provided. Note that the statistics in Table 13.1
only indicate figures of the data sets that are publicly available for the individual
types of items. The last column “Ratings/Evts.” refers to explicit (ratings) or implicit
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Table 13.1 Statistics of public data sets for music recommendation research

Data set/items Songs Albums | Artists Users Ratings/evts.
Yahoo! Music [44] —— 624,961 intotal —— | 1,000,990 | 262,810,175
MSD [14] 1,000,000 1,019,318 | 48,373,586
Last.fm—360K [31] 186,642 359,347

Last.fm—1K [31] 107,528 992 | 19,150,868
MusicMicro [121] 71,410 19,529 136,866 594,306
MMTD [57] 133,968 25,060 215,375 1,086,808
AotM-2011 [87] 98,359 17,332 16,204 859,449

Table 13.2 Features of public data sets for music recommendation research

Data set Feedback type Audio files | Item content | User context
Yahoo! Music [44] Ratings X X X

MSD [14] Listening events, tags | X v X
Last.fm—360K [31] | listening events X v X
Last.fm—1K [31] Listening events X v v
MusicMicro [121] Listening events X v v

MMTD [57] Listening events X v v
AotM-2011 [87] Playlists X v Partial

(listening events) preference indications.' In Table 13.2, the column “Feedback
type” refers to the kind of user-item-relationship that is addressed (e.g., ratings
or listening events), whereas “Item content” indicates the presence or absence
of content descriptors (e.g., metadata or audio features). The last column “User
context” shows whether contextual data of the user or the listening event is provided
(e.g., location or time).”’ Note that the absence of audio files in all data sets (see
Table 13.1) would render audio content-based approaches impossible. However,
some data sets (e.g., MSD) come with precomputed audio features, such as those
provided by The Echo Nest>' If extracting features directly from the audio file
is desired, an alternative solution is to download 30-second-snippets frequently
available for preview in major online music stores and compute features on these.
Such previews are also offered by 7digital’* via their Media Delivery API.?3

In the following, we give a short introduction to the evaluation of music
recommendation techniques in general. Hereafter, we present major evaluation

19Tn AotM-2011, this figure refers to the sum of the length of all playlists, where length is measured
as the number of songs.

20For AotM-2011 this is partially the case, as not all playlist categories refer to contextual factors.
2lhttp://the.echonest.com.

Zhttp://www.7digital.com.

Zhttp://developer.7digital.com/resources/api-docs.
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Table 13.3 Some references

Data set References

to works that make use of the ' -

discussed data sets Yahoo! Music [44] [53, 73]
MSD [14] [40, 65, 66, 128]
Last.fm—1K/360K [31] | [39, 144]
MusicMicro [121] [119, 124]
MMTD [57] [46, 50, 95, 125]
AotM-2011 [87] [21, 86]

campaigns and data sets explicitly addressing the task of music recommendation.’*

To give the reader some hints on the usage of each data set, Table 13.3 provides
references to corresponding work.

13.6.1 Evaluation Methodologies

In the recommender systems community, evaluation is often conducted by measur-
ing the error of predicted ratings (e.g., root-mean-square error, RMSE). Due to the
historical shortage of publicly available rating data for music, evaluation of music
recommendation approaches has been carried out for a long time using genre as
proxy and modeling a genre prediction task. Given the genre of the seed item(s) and
that of the recommended item(s), typical IR performance measures are used (e.g.,
precision and recall). Using genre as proxy for music preferences, however, can be
considered inherently incomplete because listeners might have driving factors for
preference other than genres (e.g., happy music with vocals). It further neglects the
perceived quality of recommendations, their actual usefulness for the listener [129],
and the user’s satisfaction [89, 122]—aspects which can only be assessed by asking
real users.

Although the number of user studies has increased [143], conducting such studies
on real-world commercial music collections remains time-consuming, expensive,
and impractical, particularly for academic researchers. Consequently, relatively few
studies measuring aspects related to user satisfaction have been published. The
study by Celma and Herrera [32] may serve as an example of a proper subjective
evaluation experiment, carried out on a larger scale. This study was conducted on
288 participants, each of which provided liking (enjoyment of the recommended
music) and familiarity ratings for 19 tracks recommended by three approaches in
a blind evaluation. The resulting large total number of evaluated tracks served as
a solid basis for statistical testing. Bogdanov [16] proposes to use four subjective
measures addressing different aspects of user preference and satisfaction to assess

24There exist many more music benchmarking activities which are oriented towards retrieval or
annotation, e.g., MIREX (http://www.music-ir.org/mirex/wiki) or MusiClef (http://www.cp.jku.at/
datasets/musiclef).
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http://www.music-ir.org/mirex/wiki
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the quality of recommendations: (1) liking; (2) familiarity with the recommended
tracks; (3) listening intention, i.e., readiness to listen to the same track again in the
future; and (4) “give-me-more,” indicating a request for or rejection of more music
that is similar to the recommended track.

13.6.2 Yahoo! Music Dataset and KDD Cup 2011

In 2011, the KDD Cup? [44] featured a music recommendation task using music
ratings data gathered on a large scale and provided by Yahoo!.?® The corresponding
data set is simply known as the Yahoo! Music data set and currently represents the
largest music recommendation data set, including 262,810,175 ratings of 624,961
music items by 1,000,990 users, and spanning the time period from 1999 to 2010.
User ratings are given partly on a standard 5-point scale, and partly on a 0-100 scale.
Different levels of granularity are covered by the ratings: tracks, albums, artists, and
genres. A characteristic of the data set is its high sparsity (99.96 %), even in light
of the typically sparse nature of other ratings data sets (for instance, 98.82 % for
the Netflix set) [44]. This high sparsity renders recommendation tasks particularly
challenging.

There were two objectives in KDD Cup 2011, which were addressed on separate
tracks. The first track was a traditional recommendation task: predict unknown
music ratings based on given explicit ratings. The best algorithm achieved an RMSE
of 0.84, when assuming a 5-point-scale for rating. It was capable of explaining
59.3 % of the rating variance. The second task aimed at distinguishing loved songs
from songs never rated. In particular, participants were required to predict three
songs for each user in the test set. To this end, the test set contained six songs for
each user: three of which the user rated high, three of which the user never rated.
As performance measure an error rate was used, corresponding to the fraction of
songs wrongly predicted as loved ones. For this second track, a smaller data set was
released, roughly 250,000 users, 300,000 items, and 60,000,000 ratings. The best
performing algorithm achieved an error rate of 2.47 % [44].

The KDD Cup 2011 received a lot of attention and had more than 2000
participants. However, it was also the subject of some controversy within the MIR
community (see http://musicmachinery.com/2011/02/22/is-the-kdd-cup-really-
music-recommendation).

The main criticism stemmed from the total anonymization and absence of
any descriptive metadata. Both users and items are represented only by opaque
numerical identifiers that do not relate to any semantic entity, such as user name or
editorial music metadata. The task was therefore frequently considered as applying
collaborative filtering techniques to a huge data set, rather than addressing the

Zhttp://www.sigkdd.org/kdd201 1/kddcup.shtml.

Zhttp://music.yahoo.com.
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particularities of music recommendation. The data set and the challenge effectively
ignore music domain knowledge, and as a result, prohibit the application of content-
based approaches. Nevertheless, the Yahoo! Music data set still represents one of the
largest collections of user ratings on music items.

13.6.3 Million Song Dataset (MSD) and MSD Challenge 2012

Acknowledging the fact that human music perception is not only influenced by
aspects encoded in the audio signal, the proponents of the Million Song Dataset*
(MSD) [14] brought together a wealth of descriptors and information on one million
contemporary popular music pieces. As of the time of writing, MSD contains
content-based descriptors (e.g., estimates of key, tempo, loudness) and editorial
metadata (e.g., artist, title, release year) from The Echo Nest, links to MusicBrainz
and 7digital, collaborative tags and similarity information from Last.fin, term vector
representation of song lyrics from musiXmatch,?® user playcount information (called
“taste profile”) again from The Echo Nest (covering almost 50 million <user,
song, playcounts triples for about one million users), and information about
cover songs from Second Hand Songs.”

Even though it has been criticized by some MIR researchers, foremost for (1) lack
of actual audio material and (2) non-transparency of how the content descriptors
were obtained, MSD certainly marked a cornerstone of publicly available music-
related data sets in terms of size and data variety. In this vein, the proponents
encourage MIR research that scales to commercial sizes of music collections. As for
criticism (1), although it is true that MSD does not come with the actual digital song
files due to copyright reasons, 30-second-snippets can be downloaded easily via
links to 7digital. Criticism (2) originates from the fact that the content descriptors
are provided out of the box by The Echo Nest, which does not reveal details on
how they were computed. Users of MSD however are also free and encouraged to
compute their own audio-based features from the 7digital snippets.

In order to provide an open evaluation contest for music recommendation
algorithms that can use a wide variety of data sources, the MSD Challenge® [85]
was organized in 2012. In contrast to KDD Cup 2011, which was highly obscured
in terms of available data, the MSD Challenge put strong emphasis on allowing for
a wide variety of approaches (for instance, including web crawling, audio analysis,
collaborative filtering, or use of metadata).

Given full listening histories of one million users and half of the listening
histories for another 110,000 test users, the task was to predict the missing hidden

?Thttp://labrosa.ee.columbia.edu/millionsong.
Zhttp://www.musixmatch.com.
Phttp://www.secondhandsongs.com.

3http://labrosa.ee.columbia.edu/millionsong/challenge.
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listening events for the test users.’! Mean average precision (MAP) computed on
the top 500 recommendations for each listener was used as main performance
measure. The winning algorithm achieved a MAP of 17.91 % using a neighborhood
method [2]. The proponents of the MSD Challenge further provided some simple
reference implementations that recommended songs only based on their popularity,
achieving MAP scores between 2.1 % and 2.3 %.

As noted above, several publicly available data sets are strongly tied to their
respective evaluation campaigns. This does not mean that they were only used in the
corresponding campaigns though; quite the contrary is true. However, there exist
a few collections that were proposed independently of benchmarking initiatives.
A selection is presented in the following.

13.6.4 Last.fm Dataset: 360K/1K Users

In his book “Music Recommendation and Discovery” [31], Celma proposes the
Last.fim Dataset—360K users and the Last.fm Dataset—IK users.>> The former
contains listening information about almost 360,000 users, but only includes artists
they most frequently listened to. The latter provides full listening histories of nearly
1000 users, up to May 2009. While the 360K set contains <user, artist,
playcounts> triples, the /K set further contains information on which songs
were played at which time, thus representing the data as <user, timestamp,
artist, song> quadruples. Both data sets contain user-specific information,
including gender, age, country, and date of registering at Last.fim. The data has been
gathered via the Last.fim APL

13.6.5 MusicMicro and Million Musical Tweets Dataset
(MMTD)

The importance of temporal and spatial information has been highlighted in
context-aware recommender systems in general [1], but also particularly in music
recommendation [36, 124]. Until 2013, however, no music-related data set providing
both types of information in high granularity was publicly available. Although
Celma’s data set contains timestamps of listening events, location is only given on
the user level. Based on music listening information extracted from microblogs, two
data sets were proposed in 2013: MusicMicro [121] and the Million Musical Tweets

3Thitp://www.kaggle.com/c/msdchallenge.

3Zhttp://ocelma.net/MusicRecommendationDataset.
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Dataset (MMTD) [57].33 The MusicMicro set contains about 600,000 listening
events by almost 137,000 distinct users and 21,000 artists. MMTD encompasses
1,087,000 listening events by 215,000 Twitter users, referring to 25,000 different
artists. The latter data set can be regarded as an extension of the former. Temporal
information is provided as month and weekday, and spatial information is given as
numerical longitude and latitude values, as well as respective countries and cities. In
addition, MMTD further includes identifiers linking to MusicBrainz, 7digital, and
Amazon.

13.6.6 AotM-2011

The AotM-2011 data set>* [87] contains playlists crawled from Art of the Mix,> a
portal to share music playlists of any kind. The playlists span the time period from
January 1998 to June 2011. The data set contains 101,343 unique playlists, which
contain a total of 859,449 events (i.e., song-playlist pairs). Each playlist has had its
songs matched to the Million Song Dataset, resulting in a total of 98,359 matching
tracks. Furthermore, a timestamp of the playlist’s upload is provided. Some of the
playlists are further annotated with activities. In addition, metadata (name and date
of joining the Art of the Mix site) is supplied for each user.

13.7 Conclusions and Challenges

In this chapter, we have given a brief overview of the state of the art in music
recommender systems. We described the distinguishing characteristics of music
recommendation in comparison to other domains, and surveyed content-based,
context-aware, hybrid, and serial recommendation methods. We further reviewed
common data sets, evaluation strategies and campaigns, and outlined their limita-
tions.

From a practical point of view, there is no single best solution to music
recommendation, in terms of features or algorithms. However, a trend towards
hybrid approaches, in particular incorporating context-aware aspects is evident.

The overarching challenge for music recommendation research is comprehensive
access to large data sets, including not only user ratings, but also contextual
information and audio content. From the researcher’s perspective, this further
motivates the need for efficient and scalable methods which can be applied to large
collections. Unfortunately, publicly available data sets with full access to audio are

Bhttp://www.cp.jku.at/datasets/musicmicro and http://www.cp.jku.at/datasets/ MMTD, resp.
3http://bmcfee.github.io/data/aotm2011.html.

3http://www.artofthemix.org.
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rare and usually small, and therefore not amenable to recommender evaluation. On
the other hand, companies that are in possession of large collections are not eager
to share their data, be it due to business reasons, user privacy concerns, or legal
constraints (i.e., copyright).

Beyond the issues of data access, there is also a need for better understanding
how different kinds of data (e.g., semantic descriptions, audio content, or contextual
factors) relate to and influence human music perception. Although many of the
studies described in this chapter have evaluated some of these effects in isolation
or on small data sets, there is still a relative lack of large-scale, comprehensive
user studies for music recommendation. Whenever possible, evaluations should be
carried out with real users, instead of optimizing for traces of preference that do
not reveal any background information or intent [122]. Moreover, even with a better
understanding of how individual factors influence music perception, it is still unclear
how to best integrate all available sources when developing hybrid recommenders.

Regarding the state of the art in context-aware music recommendation, we note
that most systems presented in Sects. 13.3 and 13.4 are research prototypes. While
certain music players allow specifying the user’s mood or activity as a query, to
our knowledge, no fully automated context-aware music recommenders have been
released to the public. The research on context-awareness in the music domain is still
in its early stages and more work is needed to address such important research topics
as understanding the relations between contextual conditions and music [97, 109],
explaining context-aware recommendations to users, and determining the right level
of user control over the recommendations [98].

If the research community manages to address these challenges and transcend
current limitations in music recommendation, many more exciting applications can
be expected in the future. These may include music players that “understand”
the user’s information or entertainment need at any point in time and provide
corresponding recommendations, or applications that target specific usage scenarios
such as group recommendations.
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