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Abstract 

This article discusses opportunities for leveraging 
scale in cases of recurring scenarios of comparable 
decisions with multiple objectives in well-defined 
domains. Based on a software component ranking and 
selection method that uses utility analysis to separate 
objective information gathering and subjective 
assessment, we discuss challenges of decision making 
such as criterion complexity and evaluation effort. 

We show that by systematically identifying criteria 
across cases, it becomes feasible to employ cross-
referencing and quantitative assessment of decision 
criteria and criteria sets across scenarios and 
organizations to improve decision making efficiency 
and effectiveness. We present a method and tool that 
allows referencing decision criteria across cases and 
employs a set of impact factors for decision criteria 
and sets of criteria. We discuss the results of analyzing 
a series of real-world case studies in software 
component selection. We analyze the applications and 
implications of the method and its potential to improve 
decision making effectiveness and efficiency. 

1. Introduction 

The task of choosing a software component for a 
specific function in order to integrate it in a software 
system is a typical case of multi-criteria decision 
making that frequently occurs in Software Engineering. 

 
Consider a decision maker with a set of 

components to fulfill a function in a software system, 
for example creating digital signatures on files. A 
number of decision factors will come into play such as 
functional suitability, security, performance efficiency, 
interoperability and costs. Some of these may pose 
conflicts: For example, increased security may come at 
the price of decreased performance efficiency or 
increased price. The decision maker has to follow a 
trustworthy and repeatable procedure to choose the 
component that best fulfills the objectives at hand.  

The domain of component selection presents an 
interesting case of multiple criteria decision support 

systems (MCDSS) since it exhibits a number of 
peculiarities: 
� A comparably large number of decisions of a very 

similar kind is made [1,4]. 
� The number of alternatives and decision criteria 

can be quite large. For example, [4] reports on a 
number of cases where between 30 and 50 
decision criteria were used and hundreds of 
metrics were collected in each case. 

� The decision criteria are rather well understood in 
terms of the facets and quality aspects that are 
evaluated. However, the individual assessment of 
each criterion's utility towards these aspects varies 
substantially among cases.  
 
In these scenarios, the problem of eliciting, 

specifying, evaluating and weighing the criteria 
becomes challenging, and the complexity of making a 
choice is correspondingly high. Given the scale of the 
decision making problem, the primary goals for 
improving decision support are the decision makers’ 
efficiency and effectiveness in reaching a choice on 
components. 

In this article, we hence discuss opportunities for 
leveraging scale in MCDSS for component ranking and 
selection problems. We discuss the key questions that 
decision makers are facing and the challenges of 
decision making efficiency and effectiveness. Based on 
a systematic identification of criteria from real-world 
cases and the separation of objective evidence and 
subjective assessment through utility functions, we 
discuss a set of factors designed to assess the impact of 
criteria and sets of criteria across decision making 
scenarios. We show that by using standardized models 
to cross-reference and assess decision criteria and 
criteria sets across scenarios and organizations, a 
number of insights into decision making factors can be 
obtained which enable improvements to the decision 
support system.  

This article is structured as follows. Section 2 
discusses related work in the area of multiple criteria 
decision making and software component selection. 
Section 3 illustrates the particular challenges of the 
decision making scenario at hand and illustrates 
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opportunities for improvement. Section 4 outlines our 
method and step-wise analysis approach, while Section 
5 applies the Goal-Question-Metric paradigm to define 
a set of impact factors for decision criteria and criteria 
sets. Section 6 discusses tool support and the 
application of our method to a number of real-world 
cases. Finally, Section 7 discusses implications and 
applications of the approach and outlines further steps. 

2. MCDSS for component selection  

Numerous approaches have been proposed for the 
general problem of software component evaluation and 
selection [1]. Most methods for component selection 
employ a variation of the standard five steps described 
in [14]: 

1. Define criteria 
2. Search for components 
3. Shortlist candidates 
4. Evaluate candidates 
5. Analyze results and choose component 
Frequently employed approaches for evaluating 

and selecting components include the usage of simple 
scoring and weighted sum approaches, the Analytic 
Hierarchy Process (AHP) [7], or iterative filtering. 
Others use methods based on utility analysis [6] to 
tackle the incommensurability of decision factors. In 
particular in cases of strict requirements on 
trustworthiness and reliable selection of components, 
evidence-based decisions using controlled testing are 
recommended [4]. A comprehensive overview of 
approaches is given in [1].  

For the scenario of component selection, using 
goal-based requirements modeling and utility analysis 
is especially suitable for a number of reasons: The 
decision models strongly build on quality attributes 
that lend themselves to requirements engineering 
approaches; the anomaly of rank reversal [13] should 
be avoided; and the number of analytical steps that for 
example the application of the AHP requires is in many 
cases prohibitive [4]. 

Still, the problematic aspect of all approaches for 
component selection that can be considered 
trustworthy, i.e. evidence-based and formalized, is the 
high complexity and effort involved in creating 
suitable evidence. This begins with the unambiguous 
specification of criteria for quality attributes, which 
can be quite challenging [3], and extends to the 
evaluation of components, i.e. the process of assigning 
values to decision criteria.  

Software quality models have provided a common 
language to high-level aspects of the selection 
problem. The ISO standard 25010 - ‘Systems and 
software engineering - Systems and software Quality  
Requirements and Evaluation (SQuaRE) - System and 

software quality models’ [9] is based on the earlier ISO 
9126 family. It defines a hierarchy of high-level quality 
attributes. SQUARE combines a revised quality model 
with evaluation procedures based on ISO 14598 [10]. 
ISO 25010 defines a product quality model that 
describes static properties of software and dynamic 
properties of the computer system, and a quality in use 
model that describes the outcome of interaction when a 
product is used in a particular context [9]. These 
models specify a number of well-defined 
characteristics and sub-characteristics.  ISO 25020 
defines requirements on the specification of software 
product quality criteria [2]. Earlier, Franch proposed a 
six-step method for defining a hierarchy of quality 
attributes for a specific domain in a top-down fashion 
[11].  

Such standardized quality models provide 
unambiguous reference points by defining a top-down 
quality model for software systems. However, they are 
not decision models; they are independent domain 
models that describe and standardize quality attributes 
of the choices to be made. Moreover, the individual 
criteria and metrics that are used to evaluate the 
options according to these aspects are left to each 
decision maker. That means that for each quality 
attribute such as functional correctness, domain-
specific decision criteria and a corresponding 
evaluation method still have to be defined. 

To separate objective evidence from the subjective 
assessment while addressing the incommensurability of 
decision criteria, utility functions can be used. In the 
framework discussed in this paper, a hierarchical 
model of objectives is built by the decision maker. The 
model uses utility functions for the leaf level of a tree 
and aggregation functions for overall scoring across the 
objective hierarchy. 

Let s be a decision scenario, i.e. a description of 
key aspects of decision cases. Such a scenario may for 
instance be the concept of selecting a visualization 
component for business intelligence solutions; of 
selecting an encryption module for supply chain 
management systems; or of selecting file format 
conversion components in digital asset management 
systems. 

Let D be a set of decision cases di, each case being 
a concrete instance of a scenario in which a decision 
maker specifies concrete decision criteria and evaluates 
actual components to choose the best fit. 

Such a decision case will specify a number of 
decision criteria ci, each with an objective aspect (such 
as the milliseconds required to perform a typical 
operation), a relative weighting against other criteria, 
and a utility function that calculates a normalized value 
between 0 and max_util for each objective measure. 
The extreme lower case of 0 denotes a reason for 
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rejecting a candidate irrespective of its performance in 
other criteria, while max_util is the optimum score. 

The objective aspect in turn can be linked to the 
abstract concept of a criterion c which represents the 
objective aspects, i.e. the metric used for evaluation. 

 
Figure 1 Visualization of scores in one case 

In each decision case, a set of alternatives ai are 
evaluated against a set of decision criteria. For each 
alternative, an overall score can be computed by 
calculating the aggregated utility of all criteria. Figure 
1 shows the high-level aggregation in our decision 
support tool for a real-world case in which 7 candidates 
were evaluated against 69 criteria in a 7-layer 
hierarchy. The overall score for an alternative ai, 
score(ai,di), is the weighted sum of the criteria utilities 
aggregated across the hierarchy of objectives. 

This approach combines objective evidence 
measured in specific scales, subjective assessment 
represented in explicitly defined scenario-specific 
utility functions, and relative weights across the goal 
hierarchy. As such, it is a flexible model, but it requires 
a profound understanding of the intricacies of decision 
making scenarios. Furthermore, a careful distinction 
between the key concepts of evidence, utility, and 
weighting is expected from the decision maker. 

To support the decision maker in understanding 
uncertainty and analyze the effects of variation, 
common approaches to sensitivity analysis vary the 
weightings of attributes to determine the robustness of 
assigned weights [8]. However, solely assessing the 
robustness of weights focuses only on the choice and 
one aspect of the specification of criteria. As such, it 
fails to take into account a number of sources for 
errors: 

1. It does not include the measurement uncertainty 
inherent in the process of gathering evidence for 
evaluation. 

2. It does not address human error in decision 
making, in particular in the specification of 
criteria itself: Relevant factors might have been 
omitted or not specified correctly. 

3. It does not address the dimension of utility, 
which might increase or decrease the impact of a 
measurement error, depending on the steepness 
of the utility function at the point of 
measurement. 

3. Challenges and Opportunities 

Decision makers in the described scenarios face a 
number of challenges. 
� The quality and completeness of the specified 

decision criteria is often unclear.  
� The effort required to specify criteria is high, since 

choosing decidable criteria for a desirable quality 
attribute is complex. 

� The effort required to perform an evaluation for 
certain criteria may be very high. For example, 
evaluating performance efficiency or the 
functional correctness of software components 
requires controlled experimentation, and 
functional correctness in particular is sometimes 
very complex to evaluate. For larger numbers of 
criteria, the total effort required to evaluate options 
becomes substantial. For example, in the cases 
reported in [4], hundreds of evaluation steps were 
required to complete the decision and choose one 
component. 
 
In order to better understand the scenario at hand, 

decision makers would require more specific insight 
and guidance from the decision support systems. This, 
however, requires us to answer a number of difficult 
questions: 

1. What is the impact of a certain criterion on the 
decision? Would a change in its evaluation, i.e. in the 
objective evidence, change preference rankings on 
alternative solutions? 

2. Considering a specific case: How critical was 
this criterion in other cases? Has it led to the exclusion 
of potential alternatives in similar cases? 

3. What is the accumulated impact of a set of 
criteria on decisions in certain scenarios?  

4. What is the minimum set of criteria that have to 
be considered in a given scenario? Can we remove 
criteria from our set to reduce evaluation effort without 
influencing the evaluation outcome? Are there any 
(sets of) decision criteria that are dominated? 
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It has to be noted that the goal of the decision 
maker in these cases is often not to discover the perfect 
solution, the optimal component, but instead to reach a 
sufficiently near-optimal decision in an effective and 
efficient manner. That means that the risk that there is 
a candidate outperforming the winning candidate will 
generally be considered much less harmful than the 
risk of the winning candidate performing suboptimal, 
i.e. failing on key criteria, and the cost of performing a 
full in-depth evaluation of alternatives that are unlikely 
to yield optimal results. 

The cases we are referring to increasingly rely on 
standardized models for top-down classification of 
criteria, such as software quality models. These specify 
comprehensive taxonomies for recurring quality 
aspects of interest. Integrating such models opens up 
opportunities to leverage the scale of multiple related 
scenarios by linking data across scenarios through a 
standard quality model. This provides most value 
within a domain, but can also be useful across 
domains.  

The next section will discuss a systematic 5-step 
approach to conduct a systematic assessment of 
decision criteria in order to enable improved tool 
support and increase the efficiency and effectiveness in 
the described scenarios. 

4. Methodical approach 

4.1 Overview 
 

 
Figure 2 Systematic analysis of decision 
criteria 

Figure 2 describes the main steps of the 
methodical analysis approach presented in this article. 
Based on a collection of real-world case studies and the 
contained decision criteria, we aligned the criteria with 

standard quality and criteria models. This leads to a 
categorization and identification of sets of criteria. To 
allow quantitative analysis and assessment, we apply 
the Goal-Question-Metric (GQM) paradigm to develop 
a set of impact factors. These have to be applicable to 
criteria and sets of criteria. Section 5 will discuss this 
step in detail. Finally, we have developed a visual 
analysis tool to support decision makers.  

 
4.2 Collect 
 

The decision support framework we are building 
our work on is being actively used by a number of 
organizations. The starting point of the systematic 
classification step is provided by a set of 14 decision 
cases that evaluated a total of 51 components against a 
total of 631 decision criteria.  
 
4.3 Align 
 

In order to allow systematic identification and 
specification of criteria across decision cases, we have 
developed a framework for systematically identifying 
and cross-referencing quality attributes and decision 
criteria for arbitrary sets of decision scenarios. The 
framework is based on well-understood top-down 
taxonomies for classifying decision criteria, including 
ISO SQUARE. In each decision case, the metrics used 
for gathering objective evidence are mapped to 
uniquely identified criteria. Tool support enables 
decision makers in this mapping. 

Decision criteria were thus mapped to standard 
models of software quality, business aspects such as 
costs, and domain-specific criteria definitions. This 
analysis phase corresponds to the process of structuring 
a reusable criteria catalogue as described in [3], where 
quality models and actual decision criteria are aligned 
and potential specification conflicts have to be 
reconciled. This led to a criteria catalogue with 
currently about 400 uniquely identified criteria. These 
are represented in an OWL1 ontology and published 
conforming to Linked Data principles2, so that decision 
support tools can easily reference them. 
 
4.4 Map 

Based on the reconciled and fully specified criteria 
catalogue, decision criteria of all decision cases were 
mapped to standardized criteria specifications. This 
involved in some cases minor, behavior-preserving 
refinements of the specification of decision criteria. In 
the 14 decision cases, 92% of the criteria were mapped 
to standard criteria in the criteria catalogue: 579 
                                                 
1 http://www.w3.org/TR/owl-ref/  
2 http://www.w3.org/DesignIssues/LinkedData.html  
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decision criteria are referencing 368 unique criteria. 
The remaining decision criteria were considered too 
specific to merit inclusion in the catalogue. This 
corresponds to entries in a “non-reusable criteria 
catalogue” as described in [3].  

 
Figure 3 Distribution of criteria mappings 

Figure 3 shows the frequency distribution of 
criteria across the set of 14 decision cases. As can be 
expected, the frequency distribution roughly 
corresponds to a power law distribution. It shows a 
long tail of rarely used criteria and a corresponding 
number of very frequently used criteria. 24 criteria are 
used in more than 25% of the decision cases, with only 
three criteria being used in two thirds of all decisions, 
while 270 criteria were referenced only once in this set 
of cases.  
 
4.5 Analyze 

The development phase comprises a set of visual 
tools and a set of quantitative indicators for criteria.  

The web-based decision support tool which is the 
background of this work is maintained as a software 
service and currently has around 800 registered users. 
A small number of these have conducted real-world 
business decisions using the framework and tool. The 
entire software suite, including the analytical module 
discussed here, is freely available and published under 
an open license on github.3 

The analysis module is an extension of this 
system. It allows domain experts to browse criteria 
according to categories and analyze the effects of 
criteria across different cases in real-time to provide 
direct insight to subject matter experts and support 
flexible analysis of the criteria catalogue. The tool 
shows all cases in anonymized form to the decision 
maker.  

Figure 4 shows the interface to browse criteria. 
We see that the analysis set focuses on 6 closely 
related decision cases, in which 219 criteria are used. 
Of these, a total 182 decision criteria are referencing a 
set of 105 standardized criteria (out of the several 
hundred in the criteria catalogue). The bottom part of 
Figure 4 visualizes the distribution of scores in the 
selected scenarios for one criterion. In 5% of the cases, 
a worst-case score of 0 was provided, which constitutes 
an unacceptable performance. 
                                                 
3 http://github.com/openplanets/plato  

 

Figure 4 Criteria used in multiple scenarios 
A closer look into the variance across decision 

cases is provided in Figure 5, which shows the 
visualization of different stakeholders’ preferences 
towards a numeric metric. The curve on the bottom 
depicts three decision maker’s utility functions, while 
the top distribution shows the different scores achieved 
by candidate software components. More than half of 
the components gained top scores, while none was 
graded with the worst-case score of 0. The utility 
curves also visually illustrate the importance of 
accounting for individual preferences in the robustness 
analysis: The same objective change can lead to 
drastically different fluctuations in scores across 
decision cases. 

 
Figure 5 Different utilities for one criterion  

4.6 Interpret 
 
This visual analysis allows for interesting insight 

into the variance across scenarios. However, to answer 
the questions raised above, we need more specific 
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indicators per criterion. The next section will define 
such indicators. In Section 6 we will discuss their 
application to a set of real-world case studies and 
illustrate their integration in the decision support 
system. 

5. Impact factors for decision criteria 

In search for realistic, relevant and representative 
indicators, this section applies the Goal-Question-
Metric approach (GQM) [12] and defines a number of 
impact factors for single criteria and groups of criteria.  

The questions raised above require an accumulated 
assessment of the impact of arbitrary sets of criteria 
over sets of cases, where each criterion may appear in a 
number of cases. To achieve this, we will define 
impact factors for single criteria and sets of criteria. 
These factors need to reflect  
� the usage frequency of a criterion in comparable 

scenarios, 
� the average weight of the criterion in scenarios 

where it appears, and 
� a criterion’s sensitivity, i.e. the extent to which the 

utility scores of decisions including the criterion 
change when the evaluation facts change.  For this, 
we need to consider the objective evidence 
collected and the utility functions defined in each 
decision case. 
 
Let C = {c1, c2, .....cn} be a non-empty set of 

criteria and D = {d1, d2, .....dm} the set of decision cases 
considered – for example, all decisions selecting file 
format conversion components in digital asset 
management systems. Then for a criterion c � C, Dc is 
the set of decisions using c. A key aspect to consider is 
the potential output range por(c,d) of a criterion c in a 
decision case d, i.e. the maximum change it causes on 
the overall score of alternatives in a decision scenario. 
This change results from its utility function uc,d and 
weighting wc,d and the potential range of input values 
allowed. We are furthermore interested in its actual 
output range aor(c,d) resulting from the application of 
values obtained as objective evidence. The latter is 
given by the weighted difference between the lowest 
and highest result of the utility function applied to the 
actual evaluation values vc � d:  aor(c, p) = wc,d × 
(max(uc,d(vc,d)) � min(uc,p(vc,d))), with aor(c, d) � 
por(c, d)�c � C, d � D. Finally, the relative output 
range ror(c, p) = aor(c,p) / por(c,p) measures the 
variation of scores within allowed boundaries. 

Finally, a discrete effect is presented by the usage 
of 0 as a mechanism for filtering unacceptable aspects: 
For each criterion, we are interested in how many 
alternatives are rejected for unacceptable performance.  

A number of combinations of these aspects are 
possible. However, only a select few of these will be 
meaningful to answer concrete questions. We will 
hence start from the decision making goals and discuss 
specific indicators and metrics as they can be derived 
from these goals.   

 
Figure 6 Metrics for key decision factors 

Figure 6 starts with the key goal of understanding 
key factors in a well-defined decision making scenario. 
The key questions relate to the frequency of occurrence 
of criteria, their output range, and the question of 
selectivity: In how many cases are components 
excluded because they fail a criterion? 

We define Coverage as the percentage of decision 
cases using at least one of the criteria in C, i.e. |Dc|/|D|. 

Maximum Impact is defined as the maximum 
sum of actual output ranges encountered across all 
decision cases in Dc, while Range denotes the average 
impact, i.e. the sum of actual output ranges in Dc 
divided by |Dc|.  

Selectivity is the percentage of alternatives 
excluded, i.e. the percentage of pairs (alternative, di,), 
with di � Dc, for which at least one of the criteria in C 
resulted in a utility score of 0. 

Considering Figure 7, the quest for increasing 
efficiency by finding minimum representative criteria 
sets requires the introduction of Significance. This 
addresses the question whether a set of criteria serves 
as a differentiating factor at all or whether it is 
dominated. We can calculate this in a straightforward 
way by iterating through all criteria for each decision 
case in the following manner: 
1. If a criterion ci has selectivity (ci) > 0, it is 

significant in di, and we continue with the next 
criterion. 

2. If selectivity (ci)  = 0 in the considered case di, we 
set the winning candidate’s utility score to the 
minimum achievable utility and all other 
candidate’s score to the maximum. If this causes a 
difference in the final ranking of candidates, the 
criterion is considered significant. 
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Figure 7 Metrics for efficient criteria sets 
In other words, a criterion is considered significant if 
and only if its selectivity is positive or if setting the 
criterion’s score to the lowest extreme for the winning 
candidate and to the highest extreme for the other 
candidates causes the overall preference ranking of 
candidates in the decision case to change. This 
definition is intentionally defensive to prevent 
exclusion of relevant criteria. 

By exclusion, we thus obtain an initial set of 
criteria that are considered insignificant on their own. 
Based on this, we iterate and build larger sets of 
criteria which, when combined, are still considered 
insignificant. The intersection of these sets across a set 
of decision cases is the set of dominated sets of criteria. 
 

Finally, we introduce measurement robustness, 
which indicates the degree to which measurement error 
causes a change in scores. This is calculated in two 
distinct ways per criterion: 
� For numeric values, robustness is the percentage 

that we need to change the measurement result on 
the overall winning candidate to make the winning 
candidate lose its winning rank.  

� For ordinal values, robustness is the percentage of 
possible measurement results for the overall 
winning candidate that would not cause the 
winning candidate to lose its winning rank. For 
example, in the case of possible ordinal values 
good, bad, or ugly with the winning candidate 
scoring good, we might find that the winner being 
evaluated as bad does not make it lose its overall 
best score in di, but rating it as ugly changes the 
ranking in di,. The corresponding robustness of 
this criterion for the decision case di is 0,66. 

6. Analysis of case studies  

To discuss the applicability, relevance and 
usefulness of the proposed analysis and the indicators 
derived from the analysis goals, we discuss the 

application of the proposed impact factors to a set of 
14 decision cases in component selection. These cases 
were selected for their complete and high-quality 
documentation of the decision making process and the 
full specification of decision criteria. 

 

 
Figure 8 Most frequently used criteria 

Figure 8 shows the most frequently used criteria in 
the case study set, ordered by descending coverage. It 
shows that 19 criteria are used in at least a third of the 
cases. The values in the column Range show that many 
of these criteria have minimal influence on the final 
ranking of candidates, which points to potential for 
optimizing decision processes. However, a number of 
criteria that have minimal output range are clearly 
significant, as shown by their selectivity. 

 

 
Figure 9 Criteria sets and impact factors 

Taking a more high-level look at quality aspects, 
the analysis tool allows the specification of named sets 
of criteria. Figure 9 shows criteria sets and their impact 
factors. The sets defined here stem from a combination 
of standard SQUARE quality attributes such as 
functional completeness with domain-specific 
requirements. For example, the set format contains 
indicators about output formats produced by file format 
conversion tools.  

It can be seen that a number of quality aspects 
such as portability, usability and maintainability of 
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software components are considered in many cases, but 
have negligible impact. Business factors (which most 
importantly include costing and licensing) have no 
selectivity, but provide for considerable variation in 
scores. 

For some sets, there is a considerable difference 
between the maximum impact caused in one particular 
decision case and the range, i.e. the average impact 
across all decisions covered, as visualized in Figure 10. 
This stems from the variation in detailed aspects of 
relevance in each scenario and needs to be considered 
carefully, since using average impact factors will be 
overly simplistic. 
 

 
Figure 10 Average and maximum impact for 
criteria sets diverge substantially 

Considering observations such as the negligible 
impact of certain criteria as evidenced in Figure 9 and 
the considerable number of criteria involved, two 
natural options arise to improve decision making 
efficiency: We can reduce the set of criteria evaluated 
or improve automation support in evaluating criteria in 
automated ways. 

We observed that a number of frequently 
considered quality aspects had negligible impact and 
zero selectivity. These were in particular portability, 
capacity, reliability, usability, maintainability and 
compatibility. The question arises whether these 
aspects had in fact any significance in the scenario. 
Thus searching for dominated sets, we focus on a 
selected homogeneous subset of 6 decision cases. 
Applying the heuristic to calculate significance that 
was described in Section 5 provides interesting results: 
� Of the abovementioned criteria sets with the 

lowest impact, none is fully dominated, although 
single criteria of these sets are frequently 
dominated.  

� Of the 105 criteria considered in the six cases, 31 
are in fact dominated across the set. 
 
To evaluate the value of increasing automation, 

the cost-benefit relation has to be considered, since 
automated measures are sometimes expensive to 
provide.  

As illustrated in Figure 11, we thus have to 
combine an analysis of coverage and significance of 
criteria with the costs of measuring, the possibility to 
verify that automated measures are correct, and the 
actual variation occurring in the real world as an 
indicator of how likely changes are to occur. Finally, 
average measurement robustness provides a valuable 
input to specify the required precision of measures: If a 
measurement error of 10% has no implications on 
decisions, investment into measurement devices with 
<1% precision will not be necessary. 
 

 
Figure 11 Metrics for automation efforts 
 
Analyzing the variation and measurement sensitivity of 
the set of cases shows interesting insights. Figure 12 
shows the variation of the 93 criteria that are used 
more than once. It can be seen that there is a broad 
distribution across criteria, and a substantial fraction of 
the criteria cause the full range of utility scores they 
can produce. 

 

 
Figure 12 Utility variation of frequent criteria 
However, very few single criteria have decisive 
sensitivity to measurement error in more than one 
decision case: Significance varies substantially 
between cases, so that conclusions across the board 
cannot be drawn. To provide a more specific detailed 
example, consider relative filesize, a criterion of 
general relevance in content management systems 
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where conversion to smaller file sizes can save storage 
space and costs. The criterion is measured as a real 
number denoting a factor: 1.0 thus means that a file 
resulting from a conversion has the same size as the 
input file. The criterion is used in 7 cases with a 
variation of 44% of the potential utility range. 
Robustness varies from 57% to 400%, with one very 
robust case: In one decision case, even very large file 
sizes would not change the preference for the chosen 
component due to clear advantages in other aspects and 
the low range of the criterion. 

7. Discussion and Outlook 

In this paper we discussed challenges and 
opportunities to use particular characteristics of scale 
in decision making scenarios for component selection 
purposes. We outlined the characteristics of the 
problem space and discussed key questions arising 
from the perspective of decision makers; domain 
experts; and decision support systems. Our 
contribution builds on an existing decision support 
framework. We formalized quality criteria so that they 
can be cross-referenced and analyzed across scenarios. 
We specified a number of metrics for the quantitative 
evaluation of decision criteria and sets of criteria, and 
illustrated their application to a set of real-world 
decision cases.  

Returning to the questions posed in Section 3, we 
can conclude that the impact factors can provide 
meaningful answers to decision makers:  

1. Calculating a criterion’s selectivity, 
significance and measurement robustness in a 
decision case enables us to understand its 
impact on a specific decision. 

2. Assessing a criterion’s selectivity and 
significance across cases allows us to 
understand its criticality across comparable 
decision scenarios. 

3. Calculating accumulated coverage, range and 
selectivity of a set of criteria in a scenario 
enables us to arrive at a better understanding 
of the critical success factors of candidate 
choices. 

4. Finally, assessing selectivity and significance 
supports us in reducing criteria sets to their 
key elements. 

The question arises in how far these metrics can be 
in fact useful to improve decision making efficiency 
and effectiveness. Based on our analysis, we can draw 
the following observations: 
� Through increased formalization and unambiguous 

specification, the semantics of criteria become 
clear and are documented more transparently. 
Correspondingly, the danger of incomplete and 

ambivalent criteria specification drops. This is 
supported by allowing decision makers to analyze 
the anonymized preference structures of others and 
gain a better understanding into the decision space 
at hand, as shown in Figures 4 and 5. 

� The combination of coverage, range and 
selectivity (illustrated in Figure 6) can inform 
which aspects are considered significant by 
decision makers who are domain experts. By 
deepening the understanding of key decision 
factors of particular domains, tool support and 
quality checks can be tailored to specific 
scenarios. The quantitative assessment of specific 
aspects of standardized quality models can further 
improve communication between solution 
providers and procurement, since clear 
performance statistics for recognized and well-
understood priorities can be communicated. 

� The combination of selectivity and significance 
(illustrated in Figure 7) can be used to discover 
sets of criteria that are dominated within the 
context of a scenario. By understanding the 
difference between selective, significant and 
insignificant criteria, we can further optimize 
decision making efficiency in a number of ways. 
For example, ordering the criteria for the 
evaluation procedure by decreasing significance 
and impact can allow the decision support system 
to cut off evaluation for candidates that are 
outperformed by other options. Furthermore, this 
provides a mechanism to prioritize automated 
measures to be developed. 

� Finally, the combination of significance, variation 
and robustness, and costs of automating decision 
criteria measurement provides valuable input for 
analyzing the cost-benefit relation of automation. 
Assessing the costs of providing automated 
measures will still be challenging. However, the 
combined application of these metrics should 
provide valuable guidance for focused 
improvement efforts. 

 
The analysis in this paper is not concerned with 

the different hierarchies that decision makers might use 
to structure the standard quality attributes according to 
their understanding. The impact factors of criteria are 
focused on the unambiguously defined criteria 
themselves. However, the specification of arbitrary sets 
of criteria allows us to group relevant sets such as 
software quality characteristics together, independently 
of their grouping in each decision case, and assess their 
cumulative impact across cases. 

The impact factors can support a reduction of 
effort and complexity in component selection activities 
in a number of ways. For example, they can be used to 
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reduce the number of alternatives that are evaluated in 
depth, remove dominated sets, or filter candidate 
components based on correlating goals and constraints 
with documented knowledge as well as experience 
shared by other decision makers. 

The assessment of decision factors demonstrated 
here can also be beneficially combined with existing 
complementary approaches to increase efficiency in 
component selection. For example, the COTS 
Acquisition Process (CAP) presented in [15] is based 
on the premise that measurement of all applicable 
criteria is too difficult and expensive and aims at 
increasing efficiency in the selection process by 
minimizing the actual measurements taken. Knowing 
which criteria are likely to have the largest impact and 
which may be dominated by other sets can greatly 
increase the effectiveness of such approaches. 

Finally, it is sometimes difficult to recognize 
hidden criteria that may be relevant to a scenario. 
Integrating aspects such as co-occurrence and 
correlation should support us in answering questions 
such as “Has the decision maker covered all relevant 
aspects? Are there any overlooked criteria that are 
related to included aspects, but have been missed? Can 
these be critical?”  

By systematically analyzing co-occurrence, 
correlation and impact of decision criteria across cases, 
it should be possible to integrate recommender systems 
into the decision making workflow that can provide 
increased guidance and warn decision makers of 
potential risks and opportunities based on others’ 
experiences. 

Current work is geared towards quantitative 
baseline assessment of decision making effort and the 
introduction of targeted improvements in decision 
support that can be evaluated objectively for efficiency 
and effectiveness. This will include the integration of 
proactive recommendations and warning heuristics for 
relevant hidden criteria based on co-occurrence and 
correlation. 
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