

An extensible monitoring framework for measuring and evaluating tool performance in a service-oriented architecture

Christoph Becker, Hannes Kulovits, Michael Kraxner, Riccardo Gottardi, Andreas Rauber

Vienna University of Technology, Vienna, Austria http://www.ifs.tuwien.ac.at/dp

9th International Conference on Web Engineering ICWE 2009

San Sebastian, Spain, June 2009

Outline

- QoS in web services
- Trustworthy software selection
 - Evidence-based decisions for transparency and trust
 - A selection method based on controlled experimentation
- Measuring tool performance
 - Monitoring framework
 - Included tools for performance measurement
 - Properties to measure
- Measuring domain-specific quality aspects
- Selected experiments and discussion

Web Services and QoS

- Late binding and flexible integration ideals
- Service quality and confidence in published metadata often unknown
- Selection and composition
- QoS modelling, ranking, selection
- Client-side measurements
- Round-trip time composed of several factors
- Runtime execution characteristics
- Server-side instrumentation

FACULTY OF !NFORMATICS

Trustworthy software selection

- Commercial-off-the-Shelf (COTS) selection
- COTS evaluation and selection procedures need to consider a wide range of influence factors
- Trustworthy decision making procedures needed
- Need for repeatability, transparency, automation
- Evidence-based evaluation and selection
 - Controlled experimentation
 - Automated measurements
 - Supported by distributed service-oriented environment
 - Candidates accessible as web services
- Digital preservation and preservation planning

Trustworthy software selection

Types of quality criteria

- Static attributes
 - Costs
 - Licensing
 - Documentation
 - Supported standards
 - ...
- Domain-specific criteria
 - Accuracy
 - ______
- Process criteria
 - Performance
 - Memory consumption
 - **—** ...

Trustworthy software selection

- Similar to general web service selection problem, but
 - Service instance used mainly for experimentation
 - After selection, it might even be possible to transfer data to code or vice versa
- Implications for measuring performance
 - Monitoring round-trip time of service consumption is not sufficient
 - Provider-side runtime characteristics are of high interest
 - Client-side monitoring is less valuable
- We need quality-aware services

FACULTY OF !NFORMATICS

QoS measurement techniques

- Provider-side instrumentation
 - Invasive vs. Non-invasive
 - Access to code?
- Intermediaries
 - Traffic routed through them
- Probing
 - Independent party invokes services and collects QoS attributes
- Sniffing
 - Monitor traffic on client side
- Non-invasive provider-side service instrumentation
 - Automated monitoring of applications exposed as web services

FACULTY OF !NFORMATICS

Core elements of the framework

- Engines make services quality-aware
- Environments have associated benchmark scores
- Registry accumulates experience

Measurements

Specification of measurable properties per engine

Measurements correspond to properties

Types of engines

- Elapsed time
- Measuring CPU time and memory usage:
 - *nix: TOP, time
 - (new) Windows: PsList
 - Java: JIP, HPROF
- Measuring quality
 - XCL eXtensible Characterisation Languages for measuring quality of object conversions in digital repositories
 - Other domain-specific QA tools for digital preservation
- Plugin structure: Additional engines can be added
- Composite Engine

Profiling tools:

Timing of Java tools

Composite engine

- "Heisenberg principle" in profiling
- Composite engine forks execution and collects results

Experiments

- Series of experiments on data conversion tools
- 50 to 300 files, 500-2800 MB input data volume
- Native applications on Linux and Windows
- Java programs
- Goals
 - Compare profiling tools
 - Select and verify metrics
 - Comparing performance
 - Accumulating experience
 - QoS tradeoffs

Experiments

- Series of experiments on data conversion tools
- 50 to 300 files, 500-2800 MB input data volume
- Native applications on Linux and Windows
- Java programs
- Goals
 - Compare profiling tools
 - Select and verify metrics
 - Comparing performance
 - Accumulating experience
 - QoS tradeoffs

Comparing tool performance

Accumulating experience

 Average processing time per MByte

Client-side measurements

- Provider-side instrumentation does not cover network latency, (un)marshalling, protocol layers etc.
- Server- and client-side measurements complementary
- Additional client-side measurements
 - Allow feedback and accumulation of measurements
 - Prevent manipulation
- Each service response contains a generated key for adding client-side measurements

FACULTY OF !NFORMATICS

Automated evaluation

- Measurements returned as metadata
- Automated mapping to defined quality criteria

Visualisation supports analysis and comparison

- Integration phase defines monitoring criteria
- Deployed components continually monitored

Visual analysis

- Planning tool Plato visualising results
- www.ifs.tuwien.ac.at/dp/plato

Results: Weighted multiplication

Result-Tree with all Alternatives, Aggregation method: Weighted multiplication Expand All | Collapse All

National Library Publications

Focus	Name	Result
	■ National Library Publications	Adobe Acrobat->PDFA: 0.00 PdfMagiConversion: 3.44 Adobe Acrobat->HTML: 3.18
X	⊕ Object characteristics	Adobe Acrobat->PDFA: 1.55 PdfMagiConversion: 1.63 Adobe Acrobat->HTML: 1.52
X	■ Technical characteristics	Adobe Acrobat->PDFA: 1.14 PdfMagiConversion: 1.14 Adobe Acrobat->HTML: 1.16
X	☐ Process Characteristics	Adobe Acrobat->PDFA: 0.00 PdfMagiConversion: 1.14 Adobe Acrobat->HTML: 1.08
	Duration	Adobe Acrobat->PDFA: 0.00 PdfMagiConversion: 1.23 Adobe Acrobat->HTML: 1.06
	Automation of the process	Adobe Acrobat->PDFA: 1.55 PdfMagiConversion: 1.90 Adobe Acrobat->HTML: 1.55
X	⊞ Integrity	Adobe Acrobat->PDFA: 1.00 PdfMagiConversion: 1.00 Adobe Acrobat->HTML: 1.00
×	⊕ Costs	Adobe Acrobat->PDFA: 1.67 PdfMagiConversion: 1.63 Adobe Acrobat->HTML: 1.67

Questions?

becker@ifs.tuwien.ac.at
www.ifs.tuwien.ac.at/~becker

.....