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Abstract. Discovering the inherent structure in data has become one of
the major challenges in data mining applications. It requires the devel-
opment of stable and adaptive models that are capable of handling the
typically very high-dimensional feature spaces. In this paper we present
the Growing Hierarchical Self-Organizing Map (GH-SOM), a neural net-
work model based on the self-organizing map. The main feature of this
extended model is its capability of growing both in terms of map size
as well as in a three-dimensional tree-structure in order to represent the
hierarchical structure present in a data collection. This capability, com-
bined with the stability of the self-organizing map for high-dimensional
feature space representation, makes it an ideal tool for data analysis and
exploration. We demonstrate the potential of this method with an ap-
plication from the information retrieval domain, which is prototypical
of the high-dimensional feature spaces frequently encountered in today’s
applications.

1 Introduction

Today’s information age may be characterized by constant massive production
and dissemination of written information. More powerful tools for exploring,
searching, and organizing the available mass of information are needed to cope
with this situation. An attractive way to assist the user in document archive
exploration is based on unsupervised artificial neural networks, especially self-
organizing maps [3], for document space representation. A number of research
publications show that this idea has found appreciation in the community [4,
5, 6, 7, 9, 13]. Self-organizing maps are used to visualize the similarity between
documents in terms of distances within the two-dimensional map display. Hence,
similar documents may be found in neighboring regions of the map.

Despite the large number of research reports on self-organizing map usage
for document archive representation, some difficulties remain untouched. First,
the determination of a suitable number of neurons requires some insight into the
structure of the document archive. This cannot be assumed, however, in case of
unknown document collections. Thus, it might be helpful if the neural network
would be able to determine this number during its learning process. Second, hier-
archical relations between the input data are not mirrored in a straight-forward



manner. Obviously, we should expect such hierarchical relations in document col-
lections where different subject matters are covered. The identification of these
hierarchical relations remains a highly important data mining task that cannot
be addressed conveniently within the framework of self-organizing map usage.

In order to overcome these two limitations of self-organizing maps we pro-
pose a novel neural network architecture in this paper, i.e. the growing hierar-
chical self-organizing map, GH-SOM for short. This neural network architecture
is capable of determining the required number of units during its unsupervised
learning process. Additionally, the data set is clustered hierarchically by relying
on a layered architecture comprising a number of independent self-organizing
maps within each layer.

The remainder of this paper is organized as follows. In Section 2 we pro-
vide an outline of architecture and learning rule of the growing hierarchical
self-organizing map. Section 3 gives a description of the experimental data set,
namely a collection of articles from the Time Magazine. We provide results from
using both the self-organizing map and the growing hierarchical self-organizing
map with this data set in Section 4. Related work is briefly described in Section
5. Finally, we present our conclusions in Section 6.

2 Growing hierarchical self-organizing maps

The key idea of the growing hierarchical self-organizing map (GH-SOM) is to
use a hierarchical neural network structure composed of a number of individual
layers each of which consists of independent self-organizing maps (SOMs). In
particular, the neural network architecture starts with a single-unit SOM at
layer 0. One SOM is used at layer 1 of the hierarchy. For every unit in this layer
1 map, a SOM might be added to the next layer of the hierarchy. This principle
is repeated with the third and any further layers of the GH-SOM.

Since one of the shortcomings of SOM usage is its fixed network architecture
in terms of the number of units and their arrangement, we rather rely on an
incrementally growing version of the SOM. This relieves us from the burden of
predefining the network’s size which is now determined during the unsupervised
training process according to the peculiarities of the input data space. Pragmati-
cally speaking, the GH-SOM is intended to uncover the hierarchical relationship
between input data in a straight-forward fashion. More precisely, the similarities
of the input data are shown in increasingly finer levels of detail along the hi-
erarchy defined by the neural network architecture. SOMs at higher layers give
a coarse grained picture of the input data space whereas SOMs of deeper lay-
ers provide fine grained input discrimination. The growth process of the neural
network is guided by the so-called quantization error which is a measure of the
quality of input data representation.

The starting point for the growth process is the overall deviation of the input
data as measured with the single-unit SOM at layer 0. This unit is assigned a
weight vector m0, m0 = [µ01 , µ02 , . . . , µ0n ]T , computed as the average of all
input data. The deviation of the input data, i.e. the mean quantization error of



this single unit, is computed as given in Expression (1) with d representing the
number of input data x. We will refer to the mean quantization error of a unit
as mqe in lower case letters.

mqe0 =
1
d
· ||m0 − x|| (1)

After the computation of mqe0, training of the GH-SOM starts with its first
layer SOM. This first layer map initially consists of a rather small number of
units, e.g. a grid of 2×2 units. Each of these units i is assigned an n-dimensional
weight vector mi, mi = [µi1 , µi2 , . . . , µin ]T , mi ∈ <n, which is initialized with
random values. It is important to note that the weight vectors have the same
dimensionality as the input patterns.

The learning process of SOMs may be described as a competition among the
units to represent the input patterns. The unit with the weight vector being
closest to the presented input pattern in terms of the input space wins the
competition. The weight vector of the winner as well as units in the vicinity
of the winner are adapted in such a way as to resemble more closely the input
pattern.

The degree of adaptation is guided by means of a learning-rate parameter
α, decreasing in time. The number of units that are subject to adaptation also
decreases in time such that at the beginning of the learning process a large
number of units around the winner is adapted, whereas towards the end only
the winner is adapted. These units are chosen by means of a neighborhood
function hci which is based on the units’ distances to the winner as measured
in the two-dimensional grid formed by the neural network. In combining these
principles of SOM training, we may write the learning rule as given in Expression
(2), where x represents the current input pattern, and c refers to the winner at
iteration t.

mi(t+ 1) = mi(t) + α(t) · hci(t) · [x(t)−mi(t)] (2)

In order to adapt the size of this first layer SOM, the mean quantization
error of the map is computed ever after a fixed number λ of training iterations
as given in Expression (3). In this formula, u refers to the number of units i
contained in the SOM m. In analogy to Expression (1), mqei is computed as
the average distance between weight vector mi and the input patterns mapped
onto unit i. We will refer to the mean quantization error of a map as MQE in
upper case letters.

MQEm =
1
u
·
∑
i

mqei (3)

The basic idea is that each layer of the GH-SOM is responsible for explaining
some portion of the deviation of the input data as present in its preceding layer.
This is done by adding units to the SOMs on each layer until a suitable size of
the map is reached. More precisely, the SOMs on each layer are allowed to grow
until the deviation present in the unit of its preceding layer is reduced to at least



a fixed percentage τm. Obviously, the smaller the parameter τm is chosen the
larger will be the size of the emerging SOM. Thus, as long as MQEm ≥ τm·mqe0

holds true for the first layer map m, either a new row or a new column of units
is added to this SOM. This insertion is performed neighboring the unit e with
the highest mean quantization error, mqee, after λ training iterations. We will
refer to this unit as the error unit. The distinction whether a new row or a new
column is inserted is guided by the location of the most dissimilar neighboring
unit to the error unit. Similarity is measured in the input space. Hence, we
insert a new row or a new column depending on the position of the neighbor
with the most dissimilar weight vector. The initialization of the weight vectors
of the new units is simply performed as the average of the weight vectors of the
existing neighbors. After the insertion, the learning-rate parameter α and the
neighborhood function hci are reset to their initial values and training continues
according to the standard training process of SOMs. Note that we currently use
the same value of the parameter τm for each map in each layer of the GH-SOM. It
might be subject to further research, however, to search for alternative strategies,
where layer or even map-dependent quantization error reduction parameters are
utilized.

Consider Figure 1 for a graphical representation of the insertion of units.
In this figure the architecture of the SOM prior to insertion is shown on the
left-hand side where we find a map of 2 × 3 units with the error unit labeled
by e and its most dissimilar neighbor signified by d. Since the most dissimilar
neighbor belongs to another row within the grid, a new row is inserted between
units e and d. The resulting architecture is shown on the right-hand side of the
figure as a map of now 3× 3 units.

Fig. 1. Insertion of units to a self-organizing map

As soon as the growth process of the first layer map is finished, i.e. MQEm <
τm ·mqe0, the units of this map are examined for expansion on the second layer.
In particular, those units that have a large mean quantization error will add
a new SOM to the second layer of the GH-SOM. The selection of these units
is based on the mean quantization error of layer 0. A parameter τu is used to
describe the desired level of granularity in input data discrimination in the final
maps. More precisely, each unit i fulfilling the criterion given in Expression (4)
will be subject to hierarchical expansion.

mqei > τu ·mqe0 (4)



The training process and unit insertion procedure now continues with these
newly established SOMs. The major difference to the training process of the
second layer map is that now only that fraction of the input data is selected for
training which is represented by the corresponding first layer unit. The strategy
for row or column insertion as well as the termination criterion is essentially
the same as used for the first layer map. The same procedure is applied for any
subsequent layers of the GH-SOM.

The training process of the GH-SOM is terminated when no more units re-
quire further expansion. Note that this training process does not necessarily lead
to a balanced hierarchy, i.e. a hierarchy with equal depth in each branch. Rather,
the specific requirements of the input data is mirrored in that clusters might exist
that are more structured than others and thus need deeper branching. Consider
Figure 2 for a graphical representation of a trained GH-SOM. In particular, the
neural network depicted in this figure consists of a single-unit SOM at layer 0,
a SOM of 2 × 3 units in layer 1, six SOMs in layer 2, i.e. one for each unit in
the layer 1 map. Note that each of these maps might have a different number
and different arrangements of units as shown in the figure. Finally, we have one
SOM in layer 3 which was expanded from one of the layer 2 units.

Fig. 2. Architecture of a trained GH-SOM

To summarize, the growth process of the GH-SOM is guided by two parame-
ters τu and τm. The parameter τu specifies the desired quality of input data rep-
resentation at the end of the training process. Each unit i with mqei > τu ·mqe0

will be expanded, i.e. a map is added to the next layer of the hierarchy, in order
to explain the input data in more detail. Contrary to that, the parameter τm
specifies the desired level of detail that is to be shown in a particular SOM. In
other words, new units are added to a SOM until the MQE of the map is a
certain fraction, τm, of the mqe of its preceding unit. Hence, the smaller τm the
larger will be the emerging maps. Conversely, the larger τm the deeper will be
the hierarchy.



3 Data Set

In the experiments presented hereafter we use the TIME Magazine article col-
lection available at http://www.ifs.tuwien.ac.at/ifs/research/ir as a reference doc-
ument archive. The collection comprises 420 documents from the TIME Mag-
azine of the early 1960’s. The documents can be thought of as forming topical
clusters in the high-dimensional feature space spanned by the words that the
documents are made up of. The goal is to map and identify those clusters on
the 2-dimensional map display. Thus, we use full-text indexing to represent the
various documents according to the vector space model of information retrieval.
The indexing process identified 5923 content terms, i.e. terms used for document
representation, by omitting words that appear in more than 90% or less than
1% of the documents. The terms are roughly stemmed and weighted accord-
ing to a tf × idf , i.e. term frequency × inverse document frequency, weighting
scheme [14], which assigns high values to terms that are considered important in
describing the contents of a document. Following the feature extraction process
we end up with 420 vectors describing the documents in the 5923-dimensional
document space, which are further used for neural network training.

4 Experimental Results

Figure 3 shows a conventional self-organizing map trained with the Times Article
Collection data set. It consists of 10× 15 units represented as table cells with a
number of articles being mapped onto each individual unit. The articles mapped
onto the same or neighboring units are considered to be similar to each other in
terms of the topic they deal with. Due to space considerations we cannot present
all the articles in the collection. We thus selected a number of units for detailed
discussion.

We find, that the SOM has succeeded in creating a topology preserving repre-
sentation of the topical clusters of articles. For example, in the lower left corner
we find a group of units representing articles on the conflict in Vietnam. To
name just a few, we find articles T320, T369 on unit (14/1)1, T390, T418,
T434 on unit (15/1) or T390, T418, T434 on unit (15/2) dealing with the gov-
ernment crackdown on buddhist monks, next to a number of articles on units
(15/4), (15/5) and neighboring ones, covering the fighting and suffering during
the Vietnam War.

A cluster of documents covering affairs in the Middle-East is located in the
lower right corner of the map around unit (15/10), next to a cluster on the so-
called Profumo-Keeler affair, a political scandal in Great Britain in the 1960’s,
on and around units (11/10) and (12/10). Above this area, on units (6/10) and
neighboring ones we find articles on elections in Italy and possible coalitions,
next to two units (3/10) and (4/10) covering elections in India. Similarly, all
other units on the map can be identified to represent a topical cluster of news
1 We use the notion (x/y) to refer to the unit located in row x and column y of the

map, starting with (1/1) in the upper left corner



Fig. 3. 10× 15 SOM of the Time Magazine collection

articles. For a more detailed discussion of the articles and topic clusters found
on this map, we refer to [12] and the online-version of this map available at
http://www.ifs.tuwien.ac.at/ifs/research/ir.

While we find the SOM to provide a good topologically ordered representa-
tion of the various topics found in the article collection, no information about
topical hierarchies can be identified from the resulting flat map. Apart from this
we find the size of the map to be quite large with respect to the number of
topics identified. This is mainly due to the fact that the size of the map has to
be determined in advance, before any information about the number of topical
clusters is available.

To overcome these shortcomings we trained a growing hierarchical SOM.
Based on the artificial unit representing the means of all data points at layer 0,
the GH-SOM training algorithm started with a 2 × 2 SOM at layer 1. The
training process for this map continued with additional units being added until
the quantization error fell below a certain percentage of the overall quantization
error of the unit at layer 0. The resulting first-layer map is depicted in Figure 4.
The map has grown for two stages, adding one row and one column respectively,
resulting in 3× 3 units representing 9 major topics in the document collection.

For convenience we list the topics of the various units, rather then the in-
dividual articles in the figure. For example, we find unit (1/1) to represent all
articles related to the situation in Vietnam, whereas Middle-East topics are cov-



Fig. 4. Layer 1 of the GH-SOM

ered on unit (1/3), or articles related to elections and other political topics on
unit (3/1) in the lower left corner to name but a few.

Based on this first separation of the most dominant topical clusters in the
article collection, further maps were automatically trained to represent the var-
ious topics in more detail. This results in 9 individual maps on layer 2, each
representing the data of the respective higher-layer unit in more detail. Some
of the units on these layer 2 maps were further expanded as distinct SOMs in
layer 3.

The resulting layer 2 maps are depicted in Figure 5. Please note, that –
according to the structure of the data – the maps on the second layer have
grown to different sizes, such as a small 2 × 2 map representing the articles of
unit (3/1) of the first map, up to 3 × 3 maps for the units (2/1), (3/2) and
(3/3). Taking a more detailed look at the first map of layer 2 representing unit
(1/1) of layer 1 we find it to give a clearer representation of articles covering
the situation in Vietnam. Units (1/1) and (2/1) on this map represent articles
on the fighting during the Vietnam War, whereas the remaining units represent
articles on the internal conflict between the catholic government and buddhist
monks. At this layer, the two units (1/2) and (3/2) have further been expanded
to form separate maps with 3 × 3 units each at layer 3. These again represent
articles on the war and the internal situation in Vietnam in more detail.

To give another example of the hierarchical structures identified during the
growing hierarchical SOM training process, we may take a look at the 2 × 3



Fig. 5. Layer 2 of the GH-SOM: 1 SOM per unit of layer 1 SOM

map representing the articles of unit (3/1) of the first layer map. All of these
articles were found to deal with political matters on layer 1. This common topic
is now displayed in more detail at the resulting second-layer map. For example,
we find unit (1/3) to represent articles on the elections in India. Next to these,
we find on units (1/2) and (2/3) articles covering the elections and discussions
about political coalitions between socialists and christian democrats in Italy. The
remaining 3 units on this map deal with different issues related to the Profumo-
Keeler scandal in Great Britain, covering the political hearings in parliament as



well as background information on this scandal and the persons involved. Again,
some of the units have been expanded at a further level of detail forming 3× 2
or 3× 3 SOMs on layer 3.

For comparing the GH-SOM with its flat counterpart we may identify the
locations of the articles on the 9 second-layer maps on the corresponding 10×15
SOM. This allows us to view the hierarchical structure of the data on the flat
map. We find that, for example, the cluster on Vietnam simply forms one larger
coherent cluster on the flat map in the lower left corner of the map covering
the rectangle spanned by the units (14/1) and (15/5). The same applies to the
cluster of Middle-East affairs, which is represented by the map of unit (1/3) in the
growing hierarchical SOM. This cluster is mainly located in the lower right corner
of the flat SOM. The cluster of political affairs, represented by unit (3/1) on the
first layer of the GH-SOM and represented in more detail on its subsequent layers,
is spread across the right side of the flat SOM, covering more or less all units on
columns 9 and 10 and between rows 3 and 12. Note, that this common topic of
political issues is not easily discernible from the overall map representation in the
flat SOM, where exactly this hierarchical information is lost. The subdivision of
this cluster on political matters becomes further evident when we consider the
second layer classification of this topic area, where the various sub-topics are
clearly separated, covering Indian elections, Italian coalitions and the British
Profumo-Keeler scandal.

As another interesting feature of the GH-SOM we want to emphasize on is
the overall reduction in map size. During analysis we found the second layer of
the GH-SOM to represent the data at about the same level of topical detail as
the corresponding flat SOM. Yet the number of units of all individual second-
layer SOMs combined is only 87 as opposed to 150 units in the flat 10 × 15
SOM. Of course we might decide to train a smaller flat SOM of, say 9 × 10
units. However, with the GH-SOM model, this number of units is determined
automatically, and only the necessary number of units is created for each level
of detail representation required by the respective layer. Furthermore, not all
branches are grown to the same depth of the hierarchy. As can be seen from
Figure 5, only some of the units are further expanded in a layer 3 map. With
the resulting maps at all layers of the hierarchy being rather small, activation
calculation and winner evaluation is by orders of magnitude faster than in the
conventional model. Apart from the speedup gained by the reduced network size,
orientation for the user is highly improved as compared to the rather huge maps
which can not be easily comprehended as a whole.

5 Related work

A number of extensions and modifications have been proposed over the years in
order to enhance the applicability of SOMs to data mining, specifically cluster
identification. Some of the approaches, such as the U-Matrix [15], or the Adaptive
Coordinates and Cluster Connection techniques [8] focus on the detection and
visualization of clusters in conventional SOMs. Similar cluster information can



also be obtained using our LabelSOM method [11], which automatically describes
the characteristics of the various units. Grouping units that have the same de-
scriptive keywords assigned to them allows to identify topical clusters within the
SOM map area. However, none of the methods identified above facilitates the
detection of hierarchical structure inherent in the data.

The hierarchical feature map [10] addresses this problems by modifying the
SOM network architecture. Instead of training a flat SOM map, a balanced
hierarchical structure of SOMs is trained. Similar to our GH-SOM model, the
data mapped onto one single unit is represented at some further level of detail in
the lower-level map assigned to this unit. However, this model rather pretends to
represent the data in a hierarchical way rather than really reflecting the structure
of the data. This is due to the fact that the architecture of the network has to
be defined in advance, i.e. the number of layers and the size of the maps at each
layer is fixed prior to network training. This leads to the definition of a balanced
tree which is used to represent the data. What we want, however, is a network
architecture definition based on the actual data presented to the network. This
requires the SOM to actually use the data available to define its architecture,
the required levels in the hierarchy and the size of the map at each level, none
of which is present in the hierarchical feature map model.

The necessity of having to define the size of the SOM in advance has been
addressed in several models, such as the Incremental Grid Growing [1] or Grow-
ing Grid [2] models. The latter, similar to our GH-SOM model, adds rows and
columns during the training process, starting with an initial 2 × 2 SOM. How-
ever, the main focus of this model lies with an equal distribution of input signals
across the map, adding units in the neighborhood of units that represent an un-
proportionally high number of data points. It does thus not primarily reflect the
concept of representation at a certain level of detail, which is rather expressed
in the overall quantization error rather then the number of data points mapped
onto certain areas. The Incremental Grid Growing model, on the other hand, can
add new units only on the borders of the map. Neither of this models, however,
takes the inherently hierarchical structure of data into account.

6 Conclusions

We have presented the Growing Hierarchical Self-Organizing Map (GH-SOM), a
neural network based on the self-organizing map (SOM), a model that has proven
to be effective for cluster analysis of very high-dimensional feature spaces. Its
main benefits are due to the model’s capabilities to (1) determine the number of
neural processing units required in order to represent the data at a desired level
of detail and (b) to create a network architecture reflecting the hierarchical struc-
ture of the data. The resulting benefits are numerous: first, the processing time
is largely reduced by training only the necessary number of units for a certain
degree of detail representation. Second, the GH-SOM by its very architecture
resembles the hierarchical structure of data, allowing the user to understand
and analyze large amounts of data in an explorative way. Third, with the vari-



ous emergent maps at each level in the hierarchy being rather small, it is easier
for the user to keep an overview of the various clusters identified in the data
and to build a cognitive model of it in a very high-dimensional feature space.
We have demonstrated the capabilities of this approach by an application from
the information retrieval domain, where text documents, which are located in
a high-dimensional feature space spanned by the words in the documents, are
clustered by their mutual similarity and where the hierarchical structure of these
documents is reflected in the resulting network architecture.
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