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1. Introduction

“We are learning to generate data more rapidly,
than we can move it.”

Communications of the ACM, Nov. 1998

1.1. A Paradigm Shift in Database Systems

When the relational database model was introduced by Codd in 1970 [16], it ad-
dressed the major shortcomings of early database systems. The advantage of sepa-
rating the data repository from the actual data processing application was quickly
recognized; so was the benefit of a consistent data model and a standardized in-
terface. The relational model provided an abstract and well-understood framework
for a wide variety of commercial and scientific applications. Above all, it promised
equal access. In the relational model it does not matter which questions are asked
first. This was a major improvement over the flat file databases and hierarchical
databases which forced the analyst to ask business questions in a pre-set order.
Relational databases finally offered the ability to unlock a wealth of information
hidden before—at least conceptually.

During the early 1980s, data bases underwent a rapid evolution, when busi-
nesses began to capture business data such as orders, invoices and other business

transactions. Early relational database systems handled about one transaction per
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second. Apparently, no large organization could survive such low transaction rates.
This situation fueled the work effort dedicated to the improvement of these sys-
tems. Judging from their wide-spread use and the increasing inclusion of database
systems in business critical applications, those work efforts succeeded. For exam-
ple, Kimball [30] cites the SABRE system, the reservation system for American
Airlines, which routinely handles workloads of 4000 transactions per second and
experienced peak workloads in excess of 13000 transactions per second. A recent
comparison published by Sequent [47] tested four systems capable of handling more
than 30000 transactions per second. The fastest systems was found to execute al-
most 49000 transactions per second. The most recent benchmark available from
the Transaction Processing Performance Council’s web-site indicates that half a
year later, the best-performing system scored more than 115000 transactions per

second.

In parallel with the query and transactional performance of database systems,
the amount of data processed by businesses and governments has increased steadily
during the last decade from the megabyte range to the multi-gigabyte ranges com-
mon today. One example of a large databases is given by Watson [50]: Wal-Mart,
the U.S. retailer, collects sales data at its 2800 stores into a single database, which
amounts to 24 terabytes of raw data. In this context, Codd [17] remark that “busi-
ness enterprises prosper or fail according to the sophistication and speed of their
information systems, and their ability to analyze and synthesize information using
those systems.” With the amount of data processed, the number of individuals
within organizations who need to access the data and perform analysis on it is
growing. These people usually fill roles, that are not primarily concerned with data
processing, but rather with the monitoring and planning of business processes. In
contrast, the development of database technology aimed at the increase of data
throughput, creating the powerful On-Line Transactional Processing (OLTP) sys-
tems available. As Kimball puts it poignantly, the database world had become so

fixated on getting data into the databases, that we forgot to think about how to
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get it out.

Almost thirty years after their introduction, relational database systems are
used for a wide variety of applications requiring the storage, updating and retrieval
of data. The application domains range from the tracking of business processes
and electronic commerce to decision support systems. A variety of products are
available, each with a special focus and non-standard extensions. However, all of
them share a common interface through the structured query language (SQL).
Modern systems support concurrent transactions, authentification and multiple

users.

Despite of all the progress made, it is surprising that the promises of simple
user interfaces and equal access to all data never came true. On the one hand,
queries on certain attributes offer a performance advantage and query optimiza-
tion has become an art of its own. Worse, the available front-end applications are
designed to support a limited number of reasonable queries. These front-end prod-
ucts have become the main limiting factor to supporting flexible user-views of the
data. Notably absent are features to freely and dynamically aggregate, consoli-
date, summarize and view data. As a consequence, explorative data analysis and

generating reports remains unnecessarily complicated.

The analysis and control of business processes is performed by specialists in
their respective business areas who are not trained database experts. Their ana-
lytical process often involves data exploration to discover what questions should
be asked, which requires interactive response times in face of unpredictable query
patterns. In contrast to OLTP which requires instantaneously accurate data, data
analysis works on data accurate as of a given point in time. The availability of
historic data is deemed more important than the availability of the latest data.
Data is viewed at various levels of details, passed trough complex analytical func-
tions, summed up, averaged and presented to the user—analyst. Speculative what-if
scenarios are evaluated. All this needs to take place within an interactive environ-

ment. Codd coined the term On-line Analytical Processing for this type of decision
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support applications.

The process data stored in databases is only rarely flat, but usually multidi-
mensional. Suppose a database that stores the sales of a grocery chain: Different
products belonging to product categories are sold in different stores in different
regions and a store’s performance if measured over time. Apparently, three sepa-
rate dimensions of the data emerge: the regional dimension, the product dimension
and a time dimension (compare Figure 1.1). It is possible to imagine the resulting
data base as a cube where each point resulting from the intersection of a particu-
lar product, store and time contains a measurement (i.e., the sales number). Such
multidimensional databases are therefore referred to as data cubes. This is a far
closer approximation to the way people see business enterprises than the purely
relational model. In addition, information on the hierarchical grouping of the raw
facts within the data cube can be added in the form of meta data. This additional
data, which is not available in an explicit form in relational databases, expresses
additional domain knowledge. It can be used to allow the easy navigation of data
and also affects query optimization (i.e., queries usually exhibit a temporal locality

in respect to the areas of the data cube referenced).

Data consolidation is the process of aggregating regions of this cube into essen-
tial knowledge. This process of generating summary information follows so-called
consolidation paths which usually reflect the actual, natural structure of the data.
For example, the aggregation of all of a year’s months into the corresponding year
is a typical aggregation path for a time dimension. The highest level of abstraction
in any data aggregation path is referred to as dimension [17] of the data. However,
this definition is somewhat misleading, since it defines the dimension through the
only dimension-value of the coarsest granularity in a data aggregation path, which
contains all dimension-values the entire dimension. Any given data dimension rep-
resents a specific perspective of the data. The simultaneous analysis of multiple
data dimensions forms the base of multi-dimensional data analysis. Once data is

consolidated according to one or multiple consolidation paths, it is possible to move
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Time
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Figure 1.1.: A 3-dimensional data cube

from a less detailed to a more detailed view and vice versa. On-line Analytical Pro-
cessing systems operate within this multi-dimensional data model to facilitate the

data analysis and decision support process.

The data On-line Analytical Processing systems operate on will only rarely
come from a single source. Instead multiple heterogenous data sources will provide
the necessary raw data to conduct meaningful analysis. This is a consequence of the
fact, that data is frequently collected in multiple locations and processed locally.
Often data analysis will require the combination of one organization’s data with
another’s. In such situations, different data models must be consolidated, redun-
dancies eliminated, inconsistencies detected and resolved. The result of this data
merging and cleaning is a homogeneous data repository with high data quality.
Usually, these data bases are referred to as data warehouses. They provide a uni-
fied and consistent view at data originating from relational data base systems, flat
files or other legacy systems. Combined with the multi-dimensional data model,

data warehouses offer the possibility to pre-calculate views according to the con-
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solidation paths present. This is one of the reasons why data warehouses tend to be
orders of magnitudes larger compared to the associated operational databases. Ac-
cording to Chaudhuri and Dayal [15], data warehouses are targeted at and almost
exclusively used for decision support applications.

We may conclude that database systems underwent a continuous evolution and
multiple paradigm shifts over the course of the last decades. The first ad-hoc im-
plementations solving specific problems, which later became generalized to general
purpose applications, were replaced by relational database systems which provided
a common abstract data model. During the 1980s, these relational database sys-
tems became the backbone of transactional systems recording business transactions
almost in real-time. The addition of transactions and concurrent, multi-user ac-
cess created On-Line Transactional databases. Only recently the latest paradigm
shift occurred with the re-evaluation of database technology as a business tool
and the re-focusing on data analysis, report generation and decision-support. The
On-line Analytical Processing paradigm, which provides flexible multi-dimensional
data analysis attempts to empower the user—analyst to be more productive. After
all, a large repository of data is worthless without the tools necessary to derive

knowledge from it.

1.2. On-Line Analytical Processing

It is impossible to provide a single, all-encompassing definition of On-line Ana-
lytical Processing (OLAP), because it inseparably depends on data warehousing:
data warehouses provide the consistent data sources to operate on. Today, data
warehouses are set up almost exclusively to support On-line Analytical Processing.
Even for data mining on data warehouses, On-line Analytical Processing systems
nowadays provide a flexible and intelligent data base access layer.

Essentially, On-line Analytical Processing provides interactive report genera-

tion and data analysis on data stored in a data warehouse. It evolved, when the
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analytical data models and algorithms used in decision support systems evolved
into a new category of database application and the first OLAP systems emerged.
The initial characterization of these On-line Analytical Processing systems ap-
peared in a white paper published by Codd et. al. [17]. This landmark paper pro-
vided the following twelve rules outlining the fundamental requirements for On-line

Analytical Processing systems:

1. Multi-dimensional Conceptional View.

As the user—analysts view of the organization is multi-dimensional in nature,
the conceptual view during analysis should be multi-dimensional as well. This
guarantees easy and intuitive data manipulation. Slice and dice (ie., select-
ing a cross-section of a data-cube and selecting a sub-cube, respectively) are
simple operations within a multi-dimensional model, but require significantly
more effort with other approaches. Furthermore, multiple hierarchies should
be supported for each hierachy, as different user groups may have different
understandings of what constitutes a natural grouping of the data (e.g., cal-

endar years vs. fiscal years).

2. Transparency.

Whether On-line Analytical Processing functionality is a built-in feature of
the user’s customary front-end product or an additional service, should be
transparent to the user. If OLAP is provided in the context of a client—
server application, this fact should be transparent as well. It should remain
transparent where the data input into the system comes from, whether from
a homogeneous or heterogenous database environment. Codd also states the
additional goal that On-line Analytical Processing should be provided in “the
context of a true open systems architecture, allowing the analytical tool to

be embedded anywhere.”

Transparency is paramount to preserving and improving the user’s produc-
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tivity. One of the implementation goals is to assure that no additional com-

plexity is introduced into the analytical process.

. Accessibility.

The analyst must be able to perform data analysis based on a common multi-
dimensional abstraction, independent of the actual data sources and their
internal organization. The On-line Analytical Processing tool needs to map
a logical schema of the data, which is provided as meta data, to possibly
heterogenous physical data stores, access this data, perform any necessary
conversions and present the user with a single, coherent and consistent view.
Only the data required to perform the indicated analysis should be accessed

to eliminate unnecessary memory traffic.

. Consistent Reporting Performance.

The subjective query performance perceived by the user may not degrade
significantly when the number of dimensions or the database size increases.
Codd considers this as “critical to maintaining the ease-of-use and lock of

complexity required in bringing OLAP to the end-user.”

This implies the (at least in my opinion) most important promise of On-
line Analytical Processing: scalable systems which can provide interactive
response time for data analysis tasks on very large data bases. However, this
scalability promise has not been redeemed so far: Current systems depend
mostly on the pre-materialization of the data cube to improve response times
(requiring only a single database access) and slow down considerably when
ad-hoc queries/aggregates/calculations are to be computed. The computation
of ad-hoc aggregates requires the retrieval of a possibly large number of facts
and the application of the consolidation function to them, requiring a time

linear to the database size in the worst case.

5. Client—Server Architecture.
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As most data requiring analysis is stored on dedicated servers, On-line An-
alytical Processing tools need to operate in a client-server environment. In
effect, the architecture of the analysis tool will follow the database systems
architecture: the server component of the analysis tool will interact with the
various database servers (becoming a client in turn), while the user interacts
with it through client applications. The structure of such an architecture is
shown in Figure 1.2; it is particularly noteworthy, how different query tools—
including decision support systems, report generators and statistical analysis

packages—will access a common data warehouse through the OLAP services.

. Generic Dimensionality.

All dimensions are symmetric and equivalent regarding their operational ca-
pabilities. The basic data structures used, aggregation functions, query eval-
uation algorithms and reporting formats may not be biased toward any di-

mension.

. Dynamic Sparse Matrix Handling.

Sparseness is one of the most prominent features of multi-dimensional databases.
It can be measured as the ratio between used cells and possible cells. Only
the ability of On-line Analytical Processing systems to adapt to the various
distributions of the source data and deal with the resulting sparseness makes
compact storage and fast operation attainable. As the distribution is unpre-
dictable for any given data model, it is necessary to dynamically adapt the
physical storage format to environment. Any system will always be caught in
a trade-off between compact storage in spite of sparse data and fast access.

The physical access storage available include

e (re-)calculation of aggregates from source data,
e B-trees and derivates,

e high-dimensional trees and index structures,
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Figure 1.2.: On-line Analytical Processing as a client-server application
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e arrays and grid files,
e hash tables and

e any combination of the above.

Multi—User Support.

Multiple analysts within an organization may require access to the same
data at the same time. For this reason, On-line Analytical Processing tools
are required to provide concurrent access to the data and security features.
If the data base can be updated by the analysts, integrity and transaction

management has to be available as well.

. Unrestricted Cross-Dimensional Operations.

The various aggregation levels contain the relations from the source database
in an implicit form. Accordingly, a multitude of consolidation paths can be
derived from them. However, other calculations will be additionally necessary.
These have to be formulated in an appropriate language. Such a language has
to support calculations across any number of dimensions and granularities.
This is necessary to model such business information as “The overhead equals
the percentage of total sales represented by the sales of each individual local

office multiplied by the total corporate overhead.”

Intuitive Data Manipulation.

The user—analysts view of the system should reflect all the information nec-
essary to effect the next analytical action, whether it is a drill-down (i.e.,
choosing a more detailed view), a roll-up (i.e., choosing a less detailed view)
or a pivoting (i.e., exchanging the axis) operation. The current view needs to

be displayed in a way natural to the application domain.

Sauter [45] discusses the importance of choosing the appropriate presenta-

tion of data to help increase a decision-maker’s intuition about trends in the

11
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data. Regarding On-line Analytical Processing applications, the most impor-
tant conclusion is the fact that data warehouses normally provide too much
information to use satisfactorily, because users become lost in the possibil-
ities. Only the reduction (i.e., consolidation) of data simplifies it in such a

way, that a meaningful analysis can be conducted.

Flexible Reporting.

The analysis of data can be simplified, if the presentation of the data can be
arranged according to logical groupings occurring naturally within the data.
A query tool has to be capable of rearranging data to capture this informa-
tion, as well as to give feedback on the consolidation paths and aggregation

levels of the displayed data.

Although this is one of the original twelve rules, it becomes more and more
irrelevant to the design and implementation of the On-line Analytical Pro-
cessing system. In modern tools a clear separation of the query evaluator
and the user-interface is attempted, splitting the functionality between the
server and the client (which may or may not be considered part of the On-line

Analytical Processing system).

Unlimited Dimensions and Aggregation Levels.

Research indicating an empirical limit of nineteen distinct dimensions is cited
by Codd [17]. However this number seems far too low. In many applications
an even higher number of dimensions will be necessary, particularly if enu-
merated types are modeled using dimensions (e.g., a customer database which

uses the customer’s gender as a dimension).

Furthermore, each of these dimensions has to support an unlimited number

of aggregation levels and consolidation paths.

However, this first definition of On-line Analytical Processing as a separate cat-

egory of database product has not remained undisputed. As Codd himself remarks,

12
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all the functions in question except the data retrieval, could be expected from any
reasonable spreadsheet program. Yet, spreadsheet vendors provide no or very lim-
ited support for OLAP so far. Many argue, that the requirements given are too
fuzzy to differentiate On-line Analytical Processing from other techniques used in
data mining and data analysis. As a consequence, On-line Analytical Processing
is frequently mistaken for a type of time-series analysis or a statistical analysis
package. A reason for criticism of Codd’s paper is the fact that it contains a very
favorable evaluation of a specific commercial product, which unsurprisingly satis-
fies all the rules laid forth. This casts a serious doubt on the objectivity of the entire
report. Codd’s clairvoyant treatment of the integration of transactional database
systems with decision support proved that decision support systems would become
a key element in the database solutions market.

Codd voices a concern for empowering the end-user within an organization with
powerful tools to view, manipulate and animate data, but recognizes the necessity
to remain compatible with legacy systems and lagacy databases. For this reason,
he mandates a synergistic implementation consisting of separate, end-user tools
that are outside and complementary to relational database products. A multi-level

architecture is suggested, which includes the following [17]:
e access to the data in the DBMS or access method files;
e definitions of the data and its dimensions;
e tools to view, manipulate and animate the data models;
e integration with the end-users’ customary interface.

In effect, this leads to an integrated business information system made up of three
distinct layers: data warehousing, OLAP and decision support.

A similar, yet fundamentally different, definition is presented by by Chaudhuri
and Dayal [14, 15]. Although this definition shared Codd’s view that a multidimen-

sional data model is a prerequisite to On-line Analytical Processing, it differs in the

13
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fact that it does not require certain features, but rather a concept: Any application
offering multidimensional analysis, an interactive user-interface and a set of OLAP
operations (e.g., roll-up, drill-down and pivot) fulfills this definition. In contrast to
the earlier model for On-line Analytical Processing, it does separate the responsi-
bilities of the data warehouse and the decision support tool rather clearly—data
storage, index selection and cleaning are the responsibility of the data warehouse,
while the querying, administration and presentation of query results is part of the
On-line Analytical Processing system. The process of pre-aggregating data is situ-
ated somewhere between. The data warehouse executes the calculations and stores
both operands and the results, while the OLAP system maintains the meta data
from which the appropriate consolidation paths and consolidation functions are

determined.

Chaudhuri’s definition proves to be far more pragmatic than Codd’s twelve
rules. However, this is not surprising, as it was written well after the first gener-
ation of OLAP tools was released. From the experiences gained with those early
systems, a number of advances in data warehouse design, modeling and implemen-
tation resulted. As On-line Analytical Processing is inseparably connected to data
warehousing, a short characterization of multi-dimensional data warehouses helps
to understand its capabilities and limitations. Queries in decision support applica-
tions routinely access a large number of database entries and evaluate analytical
functions against the resulting data sets. This is a harsh contrast to the transac-
tions found in operational databases, where each transaction updates exactly one
record. Data warehouse design attempts to negotiate this and other problems faced

when analyzing data.

A data warehouse is a homogeneous, consistent data collection. Gardner [22]
admits that there exists no single, accepted and all-encompassing definition of
a data warehouse within the information technology industry, but asserts that
“Data warehousing is a process, not a product, for assembling and managing data

from various sources for the purpose of gaining a single, detailed view of part or

14



1.2.  On-Line Analytical Processing

all of a business.” In data warehousing, multidimensional data models are used
to provide better support for decision support applications. The data is derived
from multiple sources, merged, transformed and cleansed. Additional meta data
is added to describe the structure and the internal relationships of the facts. The
data represented is the data stored in the operational databases used for transaction
processing with the addition of additional knowledge regarding its structure and
semantics. However, the data warehouse is not current with the last committed
transaction, but it is accurate as of the last time the operational database was fed
into the data warehouse. The resulting delay between a change to the data base and
the propagation of this information into the data warehouse is the update window.
The data in plain data warehouses is consistent, but data is not aggregated into

summary information.

Data marts are a special type of data warehouses. In a large organization it is
often beneficial to the query performance to replicate frequently accessed parts of
the database closer to the analyst. A data mart contains a replica of a subset to a
data warehouse. Such a data mart is used in hierarchical organizations, where most
analysts will access the data pertinent to their department and line of work far more
frequently than other data. In such environments, data marts are an effective way
to reduce the load on an organization’s data warehouse. Possible configurations of

data warehouses and data marts for a business enterprise are shown in Figure 1.3.

Kimball [30] blurs the difference between a data warehouse and an On-line An-
alytical Processing system in his introduction to the subject. The OLAP-typical,
multi-dimensional operations, such as the drill-down, roll-up and pivot are pre-
sented as SQL-queries to a relational data warehouse. Following Codd’s rules,
this constitutes an On-line Analytical Processing system. However, Kimball pre-
computes a complete data cube including all aggregations, which certainly is be-
yond the scope of data warehouses alone: The metadata describing the consolida-
tion paths—a fundamental feature of OLAP—is necessary for this. In an earlier

publication by the same author [31], the concept of denormalized databases for

15
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decision support applications is emphasized. It is argued, that only the redundant
storage of data in a normalized OLTP database and a denormalized data warehouse
for decision support can provide the response times requirements of interactive de-
cision support. This article details the benefits of dimensional modeling using the
star schema (i.e., a fully denormalized data model; see Section 1.4.2 for a descrip-
tion) and cites one case, where the redesign of a database from 50 tables down to
5 tables, without a loss of expressiveness, resulted in twenty-fold increase in query

throughput.

In contrast to the usage-oriented definitions given above, Agrawal [2] defines
a data warehouse in a more abstract way: here it is a logically multi-dimensional
data repository, which integrates data from different sources into one homogeneous
database. The physical storage format used is left unspecified provided that a data
cube can be represented. In this research report which focuses on the foundations of
multidimensional databases, aggregated information is identified as an On-line An-
alytical Processing-specific extension tot he data warehousing concept. Chapter 2

contains a discussion of the modeling approach presented.

In summary, On-line Analytical Processing characterizes the requirements for
summarizing, consolidating, viewing, applying formulae to and synthesizing data
according to multiple dimensions and consolidation paths. It is an enabling technol-
ogy which provides consistent multidimensional view on data, allows user—analysts
to navigate their databases on different granularities, supports advanced data min-
ing and tries to achieve interactive response times. However, the extent to which
interactive responses can be achieved on ad-hoc queries, i.e., queries that require
the calculation of aggregated values after the initial retrieval from the data ware-
house, is largely dependent on optimization techniques such as caching. The prime
difference between a simple data warehouse and an On-line Analytical Processing

system is the ability of the latter to aggregate and pre-aggregate data.
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1.3. On-Line Analytical Processing for Data
Analysis

On-line Analytical Processing offers a number of benefits to user-analysts. Among
the most prominent one is the ability to operate on very large data sets and still
provide interactive responses for most operations. The use of this technology is of-
ten argued on the base of flexibility of analysis achievable from cross-dimensional
computations. Nonetheless, one important argument for the use of On-line Analyt-
ical Processing for data analysis does not result from the scalability, interactivity
or intuitive data analysis. Instead, it stems from an importat aspect of multi-
dimensional databases: a simple model of operation. To every OLAP operation, a
data cube is the input—for every OLAP operation an output data cube is prepared.

The navigation of the data cube during analysis derives solely from five opera-

tors:

e Drill-Down.
To view data at a finer granularity level, a drill-down operation is executed.
It “zooms in” on the data.

e Roll-Up.
The roll-up is the inverse of the drill-down. It moves from a fine granularity
level to a coarser one and “zooms out” from the data.

e Dice.
The dice operation selects a subset of the available locations along each axis
and retrieves the corresponding “subcube”.

e Slice.

To reduce the dimensionality of the cube, a slice operation is executed. It
cuts through the cube at given point along a given axis. It is a special case

of the more general dice operation.
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e Pivot.

The actual presentation of the data retrieved is usually reduced to dimen-
sionality suitable for the available viewing device. This is done using slice
operations. The pivot operation changes the selection of dimensions retained.
If enough information is available in the client program, this operation does
not need to reevaluate the entire query. Instead, the necessary reduction in

dimensionality can be performed in the client.

1.4. Categories of On-Line Analytical Processing

Systems

On-line Analytical Processing systems can be categorized according to their ap-
proach used to the physical storage of the fact base or the frequency and algorithm
used for the synchronization between the operational database and the data ware-
house. Another feature examined when classifying those OLAP servers, which are
based on relational database, is the type of database schema used. This section
gives a brief overview of these frequently used criteria and their significance in

real-world applications.

1.4.1. Physical fact storage

Two dominant approaches for the implementation of OLAP systems exist: rela-
tional OLAP (ROLAP) and multidimensional OLAP (MOLAP). Both are named
according to the way their facts are stored physically. The relational approach uses
a value-based storage, while the multidimensional organization provides positional
storage and retrieval. In other words, an ROLAP system runs on top of a relational
database and generates SQL queries and a MOLAP system uses specialised stor-
age structures for multidimensional data which support faster access when whole

subcubes are read.
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Relational On-line Analytical Processing stores its data in a separate relational
database. Data access and data summarization are expressed in queries to the un-
derlying database. These queries are generated by a query tool and executed by
the database. The results are returned to the analysis tool for display. The naviga-
tion and presentation tool communications with the relational data repository and
queries using a relational query language. For example, the OLAP engine could
communicate with the relational database management system (RDBMS) through

a standardized SQL interface.

Multidimensional On-line Analytical Processing uses multidimensional data
structures to store tuples of data according to their position within the multi-
dimensional data-space. The data structures used to achieve this range include
grid-files [21], B*-trees [33], R*-trees [9], X-trees [10], HB-trees [37], UB-trees [5],
GiST [27], arrays and set-based structures (e.g., a treaps based set-implementation [11,
46]). The choice of data structure is highly data dependent, as their performance
and storage overhead is a variable of the database size, sparseness and data dis-
tribution. For example, UB-trees offer superior performance to multiple B*-trees,
if a large number of dimensions exists and range-queries are frequently evaluated,
which restrict the results to a small subset of the database. Grid-files offer superior
performance for densely populated data-cubes, while wasting enormous amounts

of space for very sparse structures.

Zhao et al. [52] contrasts the performance of ROLAP and MOLAP imple-
mentations. It introduces an algorithm for the computation of the data-cube in
compressed sparse arrays, which appears to outperforms all value-based based ap-
proaches. It is suggested, that it may be faster to convert a table into a position
based representation, cube the data and convert it back, than computing the data-
cube from a value-based fact table directly. This implies, that a relational storage

concept should never be chosen for performance reasons.

Sometimes a third type of On-line Analytical Processing system pops up in

the literature: hybrid On-line Analytical Processing (HOLAP). However, this term
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simply denotes a hybrid between a relational and multidimensional OLAP system.
Any system that can not be classified as unambiguously belonging to one of the

above categories, satisfies this definition.

1.4.2. Stars and snowflakes

Most operational databases, which act as sources to the data warehouse, are re-
lational. This fact and the inability of the first databases which were based on
the positional storage model to scale to large problems, created an environment,
where ROLAP became dominant. This leads to question of how to model the data
stored within the data warehouse. This data may be denormalized to allow faster
access, which invalidates the conventional wisdom of how to design a database
schema. Two distinct types of database schemata evolved which are used in data
warehouses for On-line Analytical Processing: the star schema and the snowflake
schema. Both schemata center around a central table, the so-called fact-table. This
table contains all facts contained within the data warehouse. However, that’s where

the similarities end.

The star schema

The star schema is by far the most widely used and recommended design schema for
databases used in decision support. In this schema, the database is denormalized
as far as practical, so achieve a simple query syntax and fast response times. A
vast, central table, which is surrounded by and linked to a few surrounding tables
allows access to the database (see Figure 1.4). A number of smaller tables describe
the dimensions of the data and are referred to as dimension tables. For example,
in a simple business application, one might find a “product”, “market” and “time”
table. The native keys of entries in these dimension tables, are foreign keys to an
entry in the fact table. Besides this multi-part key, the actual facts (i.e., measures)

are also stored in these fact table entries as non-key fields. These measures are
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product time
time
product
store
promotion
store guantity sold promotion

Figure 1.4.: Star schema

physically stored within the fact table. The dimension table are fully denormalized

in this model to support fast browsing and optimize query performance.

Queries on the database are formulated using the data stored in the dimension
tables. These provide the constraints to select subsets of the data. Using these
constraints, it is easy to retrieve all facts satisfying these constraints from the
fact table. The retrieval from the fact table can be performed without any join-
operations, as all measures are physically available within this table, if a star
schema is used. The dimension tables are many orders of magnitude smaller than
the fact table, enabling graphical front-end applications to provide the user with
interactive browsing of the dimensions to assemble queries.

The star schema denormalizes the database to a point, where only a fact ta-
ble containing measures and references to dimension-values remains. The tables
containing the dimension-values are completely denormalized, which increases the

redundancy in the database and complicates the updating of data. While the re-
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dundant storage of information would make the consistent updating of information
impossible, this does not matter for OLAP which only performs data analysis and
visualization and may in turn operate on a read-only data warehouse. Redundancy
increases the overall size of the database, but also improves the intuitive under-
standing of the data. The overall structure of the fact table resembles written
reports more closely than relational databases do. Kimball notes, that it even is
beneficial to the readability in a user’s point of a view, if some data in the di-
mension tables is repeated. Today, the star schema is the dominant approach to
modeling data warehouses. However, every time an argument erupts whether it
should be used or not, the overhead in storage space due to the denormalized stor-
age of dimensions is quoted. One almost wonders how this discussion ever started,
as the size of dimension tables is clearly negligible in multi-dimensional data ware-
houses. Usually the storage space used for facts will exceed the storage space used
for dimensions by multiple orders of magnitude. According to Kimball [30], even
a very large dimension will not occupy more than about 5 GB of space. Yet, for
a data warehouse with such extraordinarily large dimensions, the fact table will

reach multiple terabytes.

The star schema certainly provides the best browsing and query evaluation
performance possible. It’s design is simple and resembles the natural and intuitive
view of an enterprise; this adds the benefit that users require no special training to
fully understand the underlying data models and effectively use the database for
decision support. However, this schema has its drawbacks: it is one extreme in the
data warehouse size vs. query performance tradeoff and may cause an explosion in
the size of the data warehouse. In addition, the synchronization process between
the transactional database and the data warehouse is a non-trivial operation if this
database scheme is used. Still, fast query execution makes this an ideal database

schema for OLAP systems which require interactive responses to user input.
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Figure 1.5.: Snowflake schema

The snowflake schema

A snowflake schema has its hierarchies decomposed and each one-to-many rela-
tionship mapped to a separate table (compare Figure 1.5). This inflate the number
of tables used, while reducing the total storage size required for the fact base by
eliminating unnecessary redundant entries in these dimension tables. Again, this
schema consists of a central fact table and entries of the fact table are mapped to
entries in the dimension tables using a foreign keys. The dimension tables may in
turn refer to other tables. A time dimension may thus be nested through multiple
tables, as multiple days belong to the same month and so forth. This saves space
at the expense of a less intuitive browsing and a slower query evaluation. How-
ever, the dimension tables are multiple orders of magnitude smaller than the fact
base. For this reason, the saved space can almost never be justified in face of the
necessary processing overhead introduced by additional join-operations.

Since the browsing of the dimensional hierarchies slows to a crawl when us-
ing such a schema, it can seriously hampers the interactivity of OLAP systems.
Kimball [30] cites another reason against the use of snowflake schemata. According
to him, the average user—analyst would be intimidated by the complexity of the

database schema, when confronted with it. Yet a snowflake model offers one decisive
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advantage over star problems, whenever frequent and incremental synchronization

with the operational database is necessary.

1.4.3. Feeding and maintaining the data warehouse

The data warehouses behind the OLAP systems have two modes of operations.
During normal operation they are in read-only mode, processing queries. The sys-
tems then go off-line for the synchronization with the operational data base. While
the query phase has highly variable requirements of resources, the synchronization
process (also referred to as “feeding”) has a predictable, constant and extremely
intense workload.

First the data warehouse is cleared. Now data can be loaded into it, anew.
The actual loading phase consists of the extraction of data from one or multiple
transaction-oriented relational databases or legacy systems. From this data, di-
mensional keys are extracted. These dimensional keys help to categorize the data.
Now it is possible to insert the fact into the new fact table. Afterwards, the newly
created data warehouse is cleansed (i.e., duplicate entries and other inconsistencies
are removed). In response to this update of the fact base, some (or all) of the
pre-computed consolidated values will need to be recalculated.

Besides this naive approach to maintaining a data warehouse, newer and better

methods exist as well:

e incremental feeding.

Incremental feeding is the attempt to incrementally update the data ware-
house, without clearing and re-calculating the entire cube. How this is done
depends mostly on the dimensional structure and the consolidation functions
used.

e versioning.

Quass [42] introduces the 2VNC algorithm, which allows the concurrent up-
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1.5.

Introduction

date of the data warehouse. This has the benefit that the data warehouse

and OLAP system are available around the clock.

On-line Analytical Processing as a foundation

technology

On-line Analytical Processing proves to be an increasingly popular base technology

to access and evaluate large data sets. However, it is not a panacea. Instead of

viewing OLAP systems detached from their environment, current research focuses

on integrating them with other tools. Three main directions for the development

have emerged:
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1. OLAP as a visual data exploration tool.

Scientific experiments generate very large data sets in the multi-terabyte
range. The COMPASS experiment, which is described in [18], will generate
an object set of about 20 terabytes. The NA48 experiment at the CERN
already records data at a sustained rate of 20MB /sec [41]. Some scientists [39]
already warn, that data storage systems will soon become too slow to handle
the enormous amounts of data generated. Although modern high performance
computing techniques, cluster computing and parallel I/O are able adapting
to process such enormous amounts of data, it remains a challenge to present
this data in a useful and responsive fashion to human analysts. How, if we
are not even able to move data quickly enough, can we view and analyze this

data interactively?

On-line Analytical Processing provides interactive access, data visualization
and analytical features. Pre-aggregation enable the system to produce an-
swers to frequently used queries instantaneously—independent of the size of
the data warehouse. Recent research [49] even focuses on methods to ap-

proximate multidimensional aggregates to further extend the reach of OLAP
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applications.

. OLAP as a front-end to a database.

The On-line Analytical Processing paradigm may serve as a flexible interface
to a database. It provides database navigation, database queries and data
analysis within a multi-dimensional model. This is of particular interest to
all applications that require the detection of trends and exceptional events.
Examples of such applications can be readily found in financial planning and

portfolio management.

. OLAP as a foundation for data mining technologies.

Modern data mining techniques and knowledge discovery algorithms can pro-
vide superior performance and/or accuracy, when used in conjunction with
an On-line Analytical Processing. The summary information provided and
the different views at various granularities are a prerequisite to an “intelli-
gent” behavior of the data mining algorithms. Observations on the summary
information can be correlated to features of the raw data: this provides the

infrastructure for dynamic data dependent optimizations.

The Limitations of On-line Analytical

Processing

From this introduction, a few limitations and weaknesses of the current form of

On-line Analytical Processing may have become apparent. This section addresses

these open problems and outline possible solutions.

Although historical data is provided and evaluated, the integration of volatile

data with data warehouses is not entirely understood at this time. Update may oc-

cur repeatedly, incrementally or even frequently. However, the update window (i.e.,

the time until a change in the operational data is reflected in the data warehouse)
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in these data collections remains infinite compared to their operational counter-
parts. An algorithm for versioning data warehouses during updates exists [42]. This
solves the consistency problem, but can not shrink the update window.

The performance and scalability promise of OLAP largely still remains to be
fulfilled. Most implementations execute queries serialized on a dedicated server
system. If modern load distribution techniques are used, then they remain limited
to the underlying data warehouse. This is surprising, could be easily adapted to

exploit both parallel and distributed execution environments:

e Parallelization.

The materialization of a data cube is an inherently parallel process. While
aggregating, the cube can be partitioned into disjunct patches, which may
be processed in parallel. This works best on shared memory architecture,
or other systems with high bandwidth, low latency communication. Sanjoy
Goil [24] describes the effects of such optimizations on an IBM-SP2.

e Distribution.

One of the distinguishing features of multi-dimensional databases is the in-
dependence of its dimensions (i.e., large parts of the query evaluation can be
carried out independently and concurrently). As a consequence the evalua-
tion of queries can be efficiently distributed across networks of workstations.
No communication is necessary between these distributed processes. This ap-
proach is described in detail in chapter 3 and used in the system presented
by Rauber and Tomsich [43].

To discover trends and exceptions in data interactively and to carry out analysis
are arguments for the use of On-line Analytical Processing. However, the next
generations of tools will aid the analyst by guiding the analytical process using
knowledge discovery techniques built into the query tools and active database

elements—i.e., rules and triggers—within the OLAP server.
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Aggressive pre-aggregation improves the responsiveness, but leads to an ex-
plosion in the size of the data warehouse. Particularly with very large databases
which contain a large number of dimensions or a large hierarchy of granularities,

the adverse effect of pre-aggregation on scalability becomes apparent.

One of the most important advances in databases was the notion of data quality
management. Instead of simply storing information, it is annoted with a quantifi-
cation of it’s trustworthiness. This measure of trustworthiness is referred to as the
data quality. One of the problems of current OLAP systems is their ignorance of
data quality. Neither the consolidation of quality-annoted facts is solved, nor the

problem of requiring a query to provide a result of a certain quality or higher.

In a few years from now, current data warehouses will have accumulated a
wealth of information—too much and too detailed information to reasonably eval-
uate. It is a well known fact, that data ages. Old data will not be required on the
same fine granularity level as young data; old data is used to monitor trends. while
young data also has to accurately reflect extreme data points to detect exceptional
events. In order to provide high accuracy for recent data and providing for a long
history, some data has to be purged from the system. Such a forgetting of data,
would first aggregate the data to the next higher level and then purge the detailed
data from the system. Still, the run-time behavior of On-line Analytical Processing
is highly indeterministic. Future developments will have to overcome the worst-case
complexity an ad-hoc query, in order to open new application domains to this data

analysis technology.

Finally, security concepts for OLAP-based business information systems have
to evolve. The integration of access control with On-line Analytical Processing re-
mains an open question. The usability of executive information systems without
adequate protection for the secrecy of strategic information is limited at best. The
all-or-nothing approach from other types of data bases does not scale well: It neces-
sitates a separate data cube per user and reduces the effectiveness of caching. A fine-

grained security concept, which integrates well with multi-dimensional databases
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is necessary.

All these problems are under currently under investigation and it is expected,
that future systems will offer novel solutions to them. The requirements for suc-
cessful solutions to these problems and outlines of possible approaches to them will

are discussed in chapter 4.

1.7. Commercially available OLAP systems

According to “The OLAP Report” [1], an independent publication assessing the
market for On-line Analytical Processing solutions and implementation services,
the worldwide OLAP market grew from $1 billion in 1996 to over $2 billion in 1998.
The growth is expected to continue at this rate for at least another two years and
the market volume is projected to reach $4 billion in 2001. Competing estimates
predict even higher growth rates and market sizes, reaching up to $8 billion in
2002. However, the growth rate will likely slide in the coming years as a certain
degree of market saturation will be reached in the traditional market of business
data analysis. Another slowing factor is the appearance of low-cost products, such
as Microsoft’s OLAP services which already captures market share from far more
expensive alternatives. The amount of consulting required for current generation
systems is also far lower than for earlier generation and may slow the growth of
the market size.

With this background, it is not surprising, that every major provider of database
solutions and data visualization tools offers at least one OLAP system. In total
about 30 vendors compete in this high profile market. Data warehousing solutions
and OLAP systems are available from a number of sources including IBM, Brio
Technologies (which recently entered a distribution agreement with IBM), Red
Brick Systems, Cognos, Microsoft, ORACLE, MicroStrategy, Hyperion, SGI, Pla-
tinium Technology, and Sequent. Table 1.1 lists the most important vendors and

provides a breakdown of their respective market share (compare [1]).
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Vendor 1998 1997 1996
Hyperion Solutions 28.7% 24.7% n/a

Oracle 17.0% 20.7% 18.7%
Cognos 9.6% 10.3% 9.0%
MicroStrategy 6.4% 4.5% 3.4%
Comshare (incl. Essbase resales) 4.8% 7.5% 11.8%
Business Objects 4.4% 3.6% 1.0%
TM1, Inc. 4.1% 4.3% 2.2%
Seagate Software 3.5% 4.1% 4.2%
SAS Institute 3.6% 2.1% 1.5%
Information Advantage 2.9% 1.9% 1.4%
Applix 2.5% 2.5% 1.7%
Pilot Software 2.1% 3.9% 4.9%
IBM 1.9% n/a n/a

Gentia Software 1.5% 2.0% 2.5%
Informix 1.3% 1.2% 1.5%
Brio Technology 1.1% 0.8% 0.5%

Table 1.1.: Market share of the leading OLAP vendors.
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1.8. Roadmap

The remainder of this thesis details the design and implementation of an extensi-

ble, modular, distributed and parallelizable On-line Analytical Processing research

prototype. It is organized as follows:
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e Chapter 2 reasons about the multi-dimensional data models used for On-line

Analytical Processing systems. Three data models including those introduced
by Agrawal et al. [2] and Bayer [5] are summarized, before a novel, set-
based and efficiently parallelizable approach is presented and compared to
the existing models. The algorithms necessary to implement basic OLAP

functionality are derived for this model and analyzed.

e Chapter 3 provides a break-down of the system into functional components.

The components are connected using a software bus, such as OMG’s CORBA.
Although, this section focuses on the coarse-grained parallelism introduced by
the fact that the various dimensions of a multi-dimensional data warehouse
are independent during most of the query processing, a discussion of fine-

grained parallelism based on the model from Chapter 2 is included.

In this chapter, we also present the inter-component interfaces. These are
derived from the formal model which the goal of simplifying and minimizing

the inter-component communication.

e Chapter 4 discusses the integration of fine-grained, per-entity security, data

quality and active data base elements (i.e., rules and triggers). An overview of
the challenges faced when implementing time-constrained On-line Analytical

Processing concludes this chapter.

e Finally, a short summary and conclusion follows in chapter 5.



2. A formal data model

“Grace in all simplicity.”

William Shakespeare, “The Phcenix and the Turtle”

2.1. The Necessity

Multidimensional data analysis uses a dimensional approach to modeling data. Al-
though the implementors of On-line Analytical Processing systems are primarily
concerned with choosing and composing appropriate data structures and algo-
rithms, the implications of using a multidimensional data model, such as sparse
data structures or the independence of dimensions affect both the structure as well
as the implementation of the resulting systems.

No generally accepted formal model of multidimensional databases exists to-
day, in contrast to relational databases which where formally introduced in [16].
The concept of OLAP was formulated based on “best practices” resulting from
the experience with decision support systems in a business context. This worked
to a certain extent; however, we are beginning to see the limits of such a practice:
On-line Analytical Processing is used exclusively for the analysis of financial data.
Although OLAP has the potential to offer superior performance for the analysis
and navigation of a wide variety of data, the absence of a generic formal model for

OLAP hinders its adoption rate for “mission critical applications.” The benefits of
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a formal model for OLAP are apparent: it would be far easier to verify the correct-
ness, estimate the worst-case and typical system performance and test applications
for the conformance with OLAP principles.

In order to make certain that the system described in the following chapters
offers the expected features, provides correct answers and optimizes the frequently
used operations, a formal data model needs to be defined and analyzed. In this
section, existing models of relational databases are presented and discussed, before
a set-based data model is formulated. Query evaluation algorithms are formulated
based on this model. The set-based approach chosen offers two prominent advan-
tages: sets are a very well understood mathematical concept which allows for easy
correctness proofs and performance analysis, and they are a data structure which
can be parallelized efficiently. A short analysis of their respective space and time
complexity follows. Finally, a modification to the model is presented which provides

“binary hypercubes” capable of classifying data quickly.

2.2. The Concepts

A data model which is to satisfy the needs of On-line Analytical Processing, has
to support a number of fundamental features. User interface concerns require an
intuitive data model, which can be easily understood by analysts from a variety
of disciplines. The analytical approach chosen will necessitate a multi-dimensional
representation of the stored data, in order to efficiently navigate and analyze it.
This multi-dimensional representation will need to capture the natural, hierarchi-
cal structure and groupings identified in the source data. In interactive systems,
speed is paramount. Besides just providing correct answers, an OLAP system has
to provide answers within seconds. Providing response times in that order of mag-
nitude for multi-gigabyte data sets, requires carefully designed algorithms and data
structures chosen in accordance with them. Further, an easy mapping between the

data model used and legacy systems, such as relational databases, is necessary.
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The concepts detailed in the remainder of this section are prerequisites to provid-
ing efficient and intuitive functionality in any system. This section establishes the

concepts of a data model used for OLAP, before formalizing it.

2.2.1. Multidimensional databases

The key-feature of On-line Analytical Processing, when compared to other analysis
techniques, has always been its multidimensionality. OLAP systems derive their
intuitive interface and data exploration capabilities from dimensional modeling.
Almost all data collections we encounter display a clear differentiation between
key attributes and data attributes. These data attributes are usually measures
quantizing a real-world event. Still, such a measure is worthless without the key
information relating it to the other contents of the database.

Visualizing such a database relating key information with measures would yield
a large set of tuples in the relational database model (or, depending on the view-
point, it could also be viewed as an associative set which maps values to keys).
All the explicit knowledge about a system can be mirrored in such a flat database.
Nonetheless, it would not faithfully reflect the actual structure of reality.

In searching for an alternative to the relational model, one inevitably comes
across a model dealing with the natural structure of data: the multi-dimensional
model. This approach to data modeling first identifies possible categories to order
the measures by. These categories describe the semantics of the key attributes
found in a relational database and coincide with partitions of these key attributes.
For example, if data is collected over time, then the timestamp of each measure
may consist of multiple attributes (a partition) describing the temporal location
of the event documented. The same measure may also be categorized according to
the location it occurred at, adding a spatial location. In this simple example, the
database would be two-dimensional. Every fact would be (at least conceptually)
stored at the location in a 2-dimensional space corresponding to the projection of its

Cartesian-product of its spatial and temporal key. Obviously this can be extended
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to any number of dimensions, possibly creating very sparse, high-dimensional data-

spaces.

However, this does not justify the introduction of a new data model. Everything

described so far could be emulated using relational modeling, without an increase

of sparsity within the data structures. Multi-dimensional modeling provides two

compelling advantages over relational modeling.
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1. Simplicity.

Relational database are designed for and used with normalized data mod-
els. While the multi-dimensional model provides a high-dimensional space,
within which all data is positioned according to its key attributes, relational
models require a spider-web of tables. It would be necessary to design a de-
normalized data model to achieve the simplicity of a multidimensional model.
That would increase the storage overhead by orders of magnitude, compli-
cate consistent update operations and contradict the principles of database

design for relational databases.

In contrast, multi-dimensional data models are easily understood, as they
are equivalent to high-dimensional arrays. As such they also offer simple
algorithms and intuitive operations. It is possible to select a cross-section of
the cube (slice the cube) or select a sub-cube (dice the cube). The results
of such operations will again be high-dimensional data cubes. Consistency is
one of the major benefits of this model: even the reduction of dimensionality

for output can be expressed in term of consecutive slice operations.

. Performance.

Calculating a cross-section of the virtual data-cube stored as a denormal-
ized relational database would still involve testing a large number of records
against the selection criteria. The overhead of performing such an operation
for a multi-gigabyte data set certainly exceeds the response time expected

from an interactive tool.



2.2. The Concepts

Assuming an appropriate storage method, which clusters data accordingly,
a multidimensional implementation may be able to retrieve a slice without
“touching” any other records. In the multi-dimensional model, a cross-section

would be literally sliced out of the cube.

Although the performance of multi-dimensional databases should prove supe-
rior to what may be expected from implementations of other models, it is es-
sential to note that computers where never designed to efficiently process high-
dimensional data-structures. For this reason, the actual performance of any such
system will largely depend to the interactions between the chosen data structures
and the model. In a sense, multi-dimensionality contradicts the architectures of
modern computer systems: Computers are able to quickly process small data sets
from cache memory or even data sets read linearly from memory. Apparently,
multi-dimensional data spaces, which are inherently sparse, and the frequent cross-
sections calculated during query evaluation require novel data structure and storage

techniques.

2.2.2. Hierarchically structured data

To fully grasp the conceptual power of the multidimensional database models, it
can be beneficial to start by comparing the dimensional model to its equivalent
flat relational database. Both databases will contain the same information, with
the exception of the meta-data. Example of meta-data found in multi-dimensional
data warehouses would include information describing the hierarchical grouping of
entries in a time dimension. We measure time at different granularities: in minutes,
hours, days, months and years. A year contains 12 months, which in turn contain
between 28 and 31 days, and so on... We will group the database entries according
to those units of granularity.

On-line Analytical Processing systems attempt to mirror this intuitive simplifi-

cation of data to manage complexity. When large amounts of fine-grained data are
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available, the user would be unable to usefully analyze this data, as he would get
lost in the sheer amount of information. It is important to provide the user with

the facilities to easily change the granularity of the data, as it is seen fit.

As mentioned before, granularities form a hierarchy. This hierarchy has an iden-
tifiable, unique top and a unique bottom. The instance of the top element always
represents the entire dimension, while instances of the bottom element represent
atomic facts. Although one may be tempted to think that there will exist exactly
one path between top and bottom, there can be an unlimited number of different
paths between these two. This happens every time, when competing possibilities of
decomposing a dimension exist. For example, the time dimension can be broken up
according to the calendar year and the financial year. For every instance of one of
these granularities, an ancestor and descendents can be determined. An ancestor is
the instance which completely contains its descendants; a descendentis an element
completely contained in its ancestor. This contains a relationship serves well to put
down implicit data such as “The year 1999 consists out of the months January,

February, ...”

The before-mentioned intuitive simplification of data has to be introduced into
the data model easily. During that process, multiple fine-grained facts are summa-
rized into a coarser-grained fact. This resulting fact provides summary information
for its descendants. The process of generating this summary information is called
aggregation or consolidation. The resulting aggregation values are then used to
represent the data, when the cube is viewed at a coarser-level. In order to de-
rive the aggregated value from a set of finer-grained values, a function has to be
evaluated. This function is the aggregation function or consolidation function, a
vital component of every OLAP system as it encodes the domain specific knowl-
edge. Aggregation functions have a major impact on a system’s performance; most
important regarding the overall system performance are the algebraic properties,
such as whether the aggregation function is distributive or not. For distributive ag-

gregation functions, it is possible to reuse pre-computed intermediate results from
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earlier queries, while non-distributive functions always require a re-aggregation of

atomic facts.

2.2.3. Converting between relational and multidimensional

data-models

As indicated before, relational and multidimensional databases share most of the
information. Multi-dimensional databases are enriched with meta-data describing
the structure of the data. In order to convert a relational database into a mul-
tidimensional one, it is necessary to add the required meta-data. Parts of this
meta-data can be extracted automatically, parts have to be added by hand.

In order to convert a relational database to a multidimensional one, it is first
necessary to identify the dimensions and measures present in the data. The mea-
sures can be found easily: all those attribute, that are used primarily in calculations
are measures [2]. These are the attributes which can be aggregated into meaningful
summary information. The remaining attributes should contain key information,
which will not be affected by calculations or aggregation functions. This rule to
distinguish between dimensions and measures is just an attempt to give a rule of
thumb. Although it usually works, no general way to create a multi-dimensional
model exists. In some case, dimension-values (i.e., categorical attributes) will be
used to conduct calculations and in other cases measures will also double as cate-
gorical attributes.

The actual process of determining how many dimensions exist and which at-
tributes belongs to which dimension is more tedious. In order to separate the
different dimensions from each other the key attributes need to be divided into
partitions, such that no key attribute belongs to more than one partition and that
no key attribute from one set affects the interpretation of a key attribute from
another set. Each of these sets represents one dimension. For example, a year-

attribute affects the interpretation of a month-attribute, because as the value of

39



2. A formal data model

the year-attribute changes, a different month (a month of a different year) is de-
noted. This partitioning has the simple effect of lifting keys consisting of multiple
sub-keys into their own partitions.

After the attributes of a relational database are mapped to dimensions, and
information regarding the granularity hierarchy is supplied, it is possible to auto-
matically extract meta-data from any database. To do so, the entire database has
to be scanned once. During this scan, the values for the various granularities are

extracted and a graph of categories built from them.

2.3. State of the Art

A few attempts have been made to formally describe a multidimensional database
model. This section describes three of the most frequently used models which
represent different approaches to and three evolutionary stages of multidimensional
databases. Each of these was designed to address a specific problem and none proves

optimal under the workloads of OLAP systems.

2.3.1. Modeling multidimensional databases

An abstract data model for multidimensional databases is reported by Agrawal et
al. in [2]. The authors’ stated goal is to unify the often divergent styles used in
the various products providing multidimensional database functionality. The pre-
sented model is based on the hypercube-metaphor and defines some algebraic op-
erations which implement the functionality of a multidimensional database. How-
ever, the model stays as close as possible to relational algebra. The operators used
are designed to be translated into SQL and can be implemented either on top of
relational databases or with specialized multidimensional database engines. This
model provides a number of fundamental features which were either missing from

or ill-supported in products at that time:
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e Symmetric treatment of all dimensions and measures.

Dimensions and measures are treated equally. That is, selections and aggre-

gations are allowed both on dimensions and measures.

Suppose a query might be required to find the total sales for each product
of a given range for the sales price. In such a case, the sales fact is both a
measure and also a grouping attribute. This query categorizes according to
the measure. Asymmetric treatment of measures and dimensional attributes
would make such a behavior very difficult to achieve. According to the au-

thors, such queries are rather frequent during data analysis.

e Support for multiple hierarchies along each dimension.

Multiple hierarchies for the type-categories of granularities may exist. For
example, when navigating sales data the temporal dimension may have two
different hierarchies for the same data. A financial analyst would operate
on financial years, quarters, etc., while a marketing specialist would need to
correlate the data with vacations, holidays and similar events which requires
calendar years, seasons, months and so on. Roll-ups and drill-downs may
occur on any hierarchy in such a set-up. As such overlapping hierarchies
are frequently encountered in the modeling of business processes, supporting

them is a necessity.

e Support for computing ad-hoc aggregates.

Aggregates other than those originally specified need to be computable. That
includes both the cases, where an aggregation function different from the
one pre-specified is to be used (e.g., the average sales are to be calculated
in addition to the total sales) and also the case if an “unusual” grouping

becomes necessary (e.g., the average sales over all Aprils is to be calculated).

e Operators are closed and minimal.
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All operators are closed. That is, they are defined as a mapping from one cube
to another. The benefits of such an approach are simplicity and composability.
As all operators can be composed in any order, complex operators can be built
from the builtin operators. To further simplify things and ease the algebraic

optimization of queries, all operators were designed to be minimal.

e Support for a query model.

While older models had one-at-a-time operational semantics, this model sup-
ported the query concept. That is, queries are composed from the operators
and later materialized. That is a harsh contrast to the earlier practice of per-
forming each operation separately and presenting the intermediate result to
the user to choose the next operation. Aside from being more declarative and

less operational, this approach provide the framework for query evaluation.

e A separation of frontend and backend.

Front-end applications, such as query tools and analytical packages, are
clearly separated from the back-end and communicate through the opera-
tors provided. These operators form the interface to the multidimensional

database.

The data is organized in one or more hypercubes. There exists no formal way
to decide which attributes of the data should be used as dimensions and which one
are better made measures. Each hypercube consists of £ dimensions, with a name
D; and a domain dom; for each dimension. Elements are defined as a mapping
E(C) from domy X --- X domy, to either a n-tuple, 0, or 1. E(C)(dy, ... , dy) refers
the element at position dy, ... ,d;. Part of the meta-data is an n-tuple of names
where each of the names describes one of the components of an element of the cube
(remember, elements are n-tuples, too). If the cube contains no elements, that table
will be empty. The model makes no distinction between measures and dimensions;

for this reason, the logical model of a cube may contain more dimensions than the
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physical representation of the same cube in a storage system. As the elements of
the cube can be either 0, 1, or an n-tuple < X4,..., X, >. If the element corre-
sponding to E(C)(dy, ... ,dy) is 0, then that combination of dimension values is
not contained in the database. A 1 indicates the existence of that particular com-
bination. If a tuple is stored for a combination of dimension values, that indicates
that additional information is available. Elements are either represented using 1s
or tuples. However, these two representations can not be mixed in a single cube.
A cube is considered empty, if either all its elements are Os, or if the domain dom;
of one of its dimensions D; has no values.

All operations on the data-cube are described in terms of and assembled from

a few minimal operators. These operators are:

1. Push.

The push operation converts dimensions into elements, which can be manip-
ulated using an aggregation function. This operation is necessary to allow

dimensions and measures to be treated uniformly.

2. Pull.

The pull operation is the converse of the push operator. It creates a new
dimension for a specified member of each element. This operator is useful
for converting an element into a dimension, which can be used for joining.
This operator is also needed for the symmetric treatment of dimensions and

measures.

3. Destroy Dimension.

The dimensionality of the cube is reduced. The model allows only single-
valued dimensions to be removed. The presence of such a single-valued di-
mension implies, that for the remaining £ — 1 dimensions, there is a unique
k —1 dimensional cube, which results from eliminating this dimension. Multi-

valued dimensions can be destroyed by first applying a merge-operation to
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transform them into single-valued dimensions.

. Restriction.

The restrict operator operates on a dimension of a cube and removes the cube
values of the dimension that do not satisfy a stated condition. This operator

realizes the slicing and dicing of the cube.

. Join.

The join operator relates information from two cubes. The result of joining
an m-dimensional cube with an n-dimensional cube on k-dimensions, which
are called the joining dimensions, is a cube with m + n — k dimensions.
The resulting dimensions will have values that are the union of the values
of the source dimensions. The elements of the resulting cube are obtained
by applying a combining function to the elements that get mapped to each

other.

. Association.

The associate operator is a special case of the join operation. It is especially
useful in OLAP applications for computations like “express each months sale
as a percentage of the quarterly sale”. This operation is asymmetric and
requires each dimension to be joined with a dimension of the other cube.
During joining, the dimension-values can be mapped to arbitrary dimension-

values of the other cube’s dimension.

. Merge.

The merge operation implements an aggregation operation and its inverse.
It is used whenever the level of detail changes. As a result multiple elements
of the source cube are merged into one (i.e., changing to a higher level) or
each element is replaced by multiple (i.e., moving to a finer granularity).

Therefore, the merge either implements a many to one or a one to many

mapping.
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These operators are very close to relational algebra. This is both an advantage
and a major drawback. These operators can be quickly and easily translated into
SQL queries. This provides a migration path and allows the integration of exist-
ing systems with the multidimensional database. OLAP capabilities can be built
on top of relational database systems. However, this faithful reliance on relational
principles makes many of the operations unnecessarily slow when used in conjunc-
tion with multi-dimensional storage structures. In addition, the operators do not
follow the OLAP principle well. Slice and dice degenerate to special cases of the
restrict operator. Additionally, the symmetric treatment of dimensions and mea-
sures either incurs an overhead or disappears when mapped to a multi-dimensional
implementation. Zhao et al. [52] show that that OLAP systems based on the re-
lational paradigm will never achieve the performance of genuine multidimensional
implementations. They even argue that a conversion from relational, value-oriented
models to multidimensional, spatial structure for the query evaluation and an in-
verse conversion for the result would outperform the same query evaluated on the

relational database.

2.3.2. A data-centric approach

R. Bayer et al. [5-7] provide a data-centric model of multi-dimensional databases in
their publications on universal B-trees (UB-trees). It could be argued that this does
not actually qualify as a formal model for multidimensional databases. However,
the UB-tree is a data structure designed specifically to store multidimensional data
organized according to the star schema. For this reason, it can be used unmodified
at the core of a multidimensional data repository and its model constitutes the
formal model of the associated multidimensional database.

The UB-tree access structure is a method to organize objects which populate an
n-dimensional data-space, such that they can be stored, retrieved and manipulated
efficiently. It was designed to improve upon the earlier data structures which either

could not give performance guarantees or were unable to handle dynamic data
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sets. The multidimensional space is mapped to a linear data-space in such a way
that the multidimensional clustering is preserved. The performance guarantees are
given for the access primitives and are logarithmic for the number of objects in the

data-space.

The model underlying the UB-tree handles all dimensions symmetrical, but
treats measures in a special way. This, in contrast to the abstract model described
earlier, mirrors the realities of storing data: a difference exists between the data
stored (the measures) and the position where the data is stored (expressed in terms
of dimension-values). Basically, the UB-tree is a variant of the B-tree, in which the
keys are addresses of regions. Formally, a region is defined as the set-difference
between two areas. An area is the result of mapping the partitions of a cube,
which was partitioned into 2" sub-cubes where n is the number of dimensions of the
original cube, to a structure which successively adds up sub-cubes. The addresses
of the areas are ordered lexicographically and coincide with the addresses of the

last sub-cubes included in them.

The algorithms (operators) defined are limited to insertion, deletion and query-
ing. Regarding the query evaluation, point queries (exact match queries) and range
queries are treated differently. The model treats the dimensions symmetrically dur-
ing query evaluation through an appropriate key to address mapping. The Tetris
algorithm [38] efficiently supports operations from the relational algebras, such as

selection, sorting, grouping with aggregation and projection.

The benefits of the data-centric approach in modeling multidimensional databases
is apparent: an associated data structure is available and can be used immedi-
ately to implement the database. The particular data structure, the UB-tree, is
proven effective for insertion, point and range queries. With its symmetric han-
dling of dimensions and the fact that the clustering of data is retained, it appears
to offer superior performance for OLAP. It even performs better with the addi-
tion of dimensions. However, the concentration of providing efficient storage and

retrieval neglected the user’s needs. The UB-tree performs worse than even rela-
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tional databases for hyper-plane queries (i.e., queries where only one attribute is
restricted). Unfortunately, such queries are frequent in a decision support context.
Another drawback of this particular model is its reliance on processing addresses
encoding the information for all dimensions; this severely limits the possibilities

for a parallelization of the query execution.

2.3.3. Conceptual modeling based on E/R schemes

To complete the overview of approaches to modeling the multidimensional databases,
a conceptual model for multidimensional data warehouses which builds on E/R
schemes needs to be discussed. Golfarelli, Maio and Rizzi [25] define multidimen-
sional databases in dependence of entity—relationship schemes. This permits a reuse
of the database schemata used for relational databases in the construction of mul-
tidimensional databases and the semi-automated construction of multidimensional
data warehouses.

In this model, a multidimensional database consists of fact schemes. Fact schemes
consist of facts, dimensions and hierarchies. A fact is a unit of business information
(i.e., a single entity stored within the data warehouse); a dimension determines the
granularity adopted for representing facts, and a hierarchy determines how fact
instances may be aggregated and selected. A fact scheme is structured as a tree,
whose root is a fact. Each vertex directly attached to the fact is a dimension and
subtree rooted in dimensions are hierarchies. The dimension in which a hierarchy
is rooted defines its finest aggregation granularity. The attributes in the vertices
along each sub-path of the hierarchy starting from the dimension define progres-
sively coarser granularities. A fact expresses a many-to-many relationship among
the dimensions. Each combinations of values of the dimensions defines a fact in-
stance, characterized by exactly one value for each fact attribute (i.e., measure).
Again, measures and dimensions are treated differently in the model.

This model provides an easy path from relational databases, which were mod-

eled using entity-relationship schemes, to a multidimensional data-warehouse. Un-
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Figure 2.1.: A simple three-dimensional fact scheme generated from an E/R schema

luckily it remains too closely tied to relational databases to be used with multidi-

mensional data structures.

2.4. The Formal Model

The models presented so far all have serious drawbacks when used for On-line
Analytical Processing. Either they do not scale well, define operators which are less-
than-optimal for OLAP or depend on a specific type of data storage. For this reason
a novel, set-based data model is introduced here. It improves these deficiencies
and works with any type of underlying data storage structure. Concurrency and
scalability need to be considered during the design and become an integral part of
the computational model.

It was designed in respect to the requirements of an easy and efficient im-
plementation and leaves room for both parallel and distributed query processing.

Furthermore, it relies solely on sets, nested sets and relations for its data struc-
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tures and to define the operational semantics of its algorithms; it provides a well
understood and easily proveable framework for a formal analysis. This model uni-
fies elements of the models described above and satisfies a number of important

design goals:

e Symmetric treatment of all dimensions.

All dimensions are treated symmetrically. All dimensions have the same struc-
ture and priority. The order in which restrictions on the dimension-values are
applied during query evaluation remains unspecified (i.e., even a concurrent

application of these restriction is possible).

e Ease of implementation.

This model makes use of sets extensively. They provide the hierarchical struc-
turing of granularities and store intermediate results. As sets are a well-
understood data type, their use eases the implementation. Even more impor-
tant to this requirement is the simplicity of the algorithms for Roll-up and
Drill-down.

e A provable model.

The simple structure of the model and the pervasive use of sets permits proofs
of the model and the verification of its implementations with respect to its

correctness.

e Support for ad-hoc queries.

Ad-hoc queries are supported. It is possible to specify an aggregation function
and select and restrict its application to any subset of dimensional-values
during a query. In order to provide efficient query execution, a restriction is
introduced that limits the application of consolidation functions to measures

only.
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e Scalability and support for parallel and distributed query process-

ing.

The chosen approach to representing dimensions and dimension-values keeps
them separate during query processing for as long as possible. This allows for
a parallel execution of multiple instances of the query evaluation algorithm.
In addition sets are a data type which can be parallelized efficiently [11, 13,
33]. Overall, this permits a superior scalability of databases building on this

model.

Flexibility.

The model does not operate on any particular type of data. It can handle
business data as well as scientific data. Any type of aggregation function can

be specified, whether it is distributive or not.

No assumptions about the type and structure of the data ware-

house.

Regarding the actual storage method used to realize the underlying data
warehouse, the on-disk and the in-memory caches, no assumptions are made.
The model operates solely on a multi-dimensional data cube; the positional
vectors used can then be translated into the appropriate data access primi-

tives.

Support for “virtual” data warehouses assembled from multiple

databases.

An underlying data warehouse may be implemented using a single data repos-
itory or a number of separate storage nodes. The model does not assume a
particular structure or access method to it. This feature permits the deploy-

ment of systems where the data is available in a distributed form only.

This section gives a short summary of the formal data model used for the system

presented in this thesis. The description has been simplified as far as possible to
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allow for easy reading while still mentioning the most important features of our

approach.

2.4.1. Defining a multi-dimensional data-space

Relational databases provide a linear, uni-dimensional data-space. Facts are ex-
pressed as the instantiation of a relational schema. While the schema definition for
a fact of j attributes contains a tuple of domain descriptions for each attribute of
the fact

Schema := Dom(A;) x --- x Dom(A;),

an actual fact is a tuple of values chosen from those domains
Fact := a; € Dom(A;) x --- x a; € Dom(A4;).

However, such a definition does not capture the natural and logical structure of
data. A different approach is necessary to reflect the hierarchical organization and
multiple granularities observed in data. In order to express these facets of the data,
multidimensional modeling is required.

A multidimensional data space can be defined as an extension to the relational
data space by introducing additional semantical information. As this additional
information consists of data about the structure of the data stored within the
database, it is referred to as structural meta-data.

Multidimensional databases use a positional representation of data, as opposed
to the value-based representation of relational databases. Instead of providing a
repository for tuples, values (i.e., measures) are associated with positions (i.e.,
keys). To support this, the attributes (A4; € A) are partitioned explicitly into two
sets according to whether they contain a key or a measure. The resulting set of keys
(K C A) and set of measure attributes (V' C A) are disjunct (K NV = @) and add
up to the original set of attributes (K UV = A). A naive definition of positional

databases in a relation ¢ which holds only if a tuple ¢ = ky X - - - X k|| X v1 X+ - - X v}y
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is contained in the database
¢: kov with k € Dom(K) and v € Dom(V).

That is, every instance of the database schema is broken into its key and value.
The values are then associated with the keys and every value can be retrieved using
its key. If ¢ holds, a vector k is the position vector of a fact v, since it represents
the spatial position of the fact within the multidimensional data space. Yet, such
a simple positional model does not offer any advantage over the relation model,
alone.

In order to convey more information about the data and permit intuitive query-
ing, it is important to recognize the fact that data is granular. That is, data does
not only exist at one level of granularity, but can be viewed at a number of gran-
ularities. Even the data stored in conventional databases is granular, although the
databases do not specifically support the management of such granular informa-
tion. Examples for queries exploiting such granular data are “What are the average
sales per month?” or “What is the total revenue per year?”.

Different levels of granularities materialize in the form of multiple associated
attributes. For example, the different granularities of time may be represented using
separate fields for the year, month and day. The term semantically dependent will
be used for the relationship between such attributes. In general, two attributes
are semantically dependent if and only if, assigning a different value to one of
them will affect the interpretation of the other one. To illustrate this, assume the
relationship between a month and a year attribute: if the value of the year field
is changed, a month of a different year is referred to even though the month field
remains unchanged. Using this definition, we can partition the set of keys K even
further into n subsets D;,... , D, with the properties that D; # D; with i # j,
D;ND; =0 withi# j and D; U---U D, = K. Additionally we require that for
any selection of @ € D; and b € D; with ¢ # j, a and b have to be semantically

independent. If these conditions are satisfied, we call those D; dimensions. Every
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Figure 2.2.: Example of the granularity hierarchy present in a time dimension

dimension expresses a concept of the database. For example, a time-dimension will
contain all time related fields (such as year, month, day, etc.), but no information
related to a different concept such as a product classification.

Semantically dependent attributes usually imply a hierarchical ordering within
their dimension which is equivalent to the hierarchy of granularities observed in
the data. An example of such a hierarchy, as it can be found in a time dimension,
is shown in Figure 2.2. The nodes of the depicted graph correspond to attributes
of the dimension, while the vertices model a “contains” relationship. In order to
guarantee that the resulting graph is a lattice, an artificial top node T and a bottom
node | are added. The top node represents the entire dimension, while the bottom
node represents single facts. By adding the | node, we require all facts to consist
of the same attributes. Intuitively, a dimension-value consists of multiple sub-keys
(i.e., elements from the domains of the K; contained within the dimension).

More formally, given a dimension D = {Kj,..., K,,} of m different, semanti-

cally dependent attributes, a relation i is introduced which models the hierarchical
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ordering according to the meta data. K U{T, L} together with > forms a directed
acyclic graph, which we will call hierarchy of granularities; let >* be the reflexive

and transitive hull of >. The following relations must hold:

Tp*K; forallie {1,...,m} and K;p* L forallie {1,... ,m}.

Every node must be a successor of the top node and a predecessor of the bottom
node. Let desc(K;) = {K;|K;> K;} and asc(K;) = {K;|K; > K;}. Furthermore,
desc(T) = {K;|T>K;} and asc(L) = {K;|K;>L}. A type K is said to be uniquely
decomposable, if |desc(K;)| = 1. In Figure 2.2, week is uniquely decomposable,
while T is not.

Although this addition of type information in the form of a granularity lattice
helps to understand the structure of the data, it does not include the mechanism
to resolve queries in different granularities. This leads to the definition of the
dimension values, which mirror the behavior of indices in relational databases and
perform a logical grouping (and physical clustering) of data. For this purpose, a

hierarchy of dimension values is maintained. Such a dimension value is a tuple
k =k, € Dom(K;) X --- X kp, € Dom(Kp,)

for a dimension D containing m attributes. If all these are merged into a single
tree, all “contains” relationships present in the data are made explicit. Figure 2.3
shows an example of dimension values for a trivial granularity hierarchy.

Each node in this hierarchy is a tuple key X ancestors x descendants. The
ancestors-set and descendants-set imply a part-of relationship on the keys: e.g.,
March 1998 is a part of 1998. Two nodes may contain the same value for the key
field, but identify distinct spatial locations (e.g., June1998 and June1999 both have
June as their key attribute). Apparently, the equivalence of nodes can be deter-
mined only from their location within the hierarchy of nodes. Let > denote the de-
scendant relation, such that a>b holds, if and only if b is a descendent of a (e.g.,1999

> June1999). Now we can describe the position of any node n within the hierarchy
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Figure 2.3.: Example of a time dimension: The arrows denote a “contains”-

relationship.

as p(n) = {n}U{eler*n} where >* denotes the transitive closure over . Two nodes
can be tested for equivalence using their path: n; and n, are the same node, if and
only if, p(n1) = p(nz). For example, p(June1998) = {T,199x,1998, June1998}
while p(June1999) = {T,199x, 1999, June1999}. Using the descendant relation,
we can define the contents of the descendants and ancestors fields of a node as
well: n.descendants = {e|n>e} and n.ancestors = {elepn}. As a result, the node for
199x is represented by the tuple < 199x x T x{1998,1999} >. Since the nodes 1998
and 1999 contain a set of descendent nodes again, this leaves us with a structure of
nested sets. This set-based notation was chosen over an equivalent relation-based
notation for two reasons: it permits the query evaluation algorithm to be expressed
as iterative term substitution. An early prototype, which was written in Scheme,
actually implemented these structures with nested lists and expressed the entire
query evaluation as a recursion over the levels of these lists.

An aggregation function feggregate (Often referred to as consolidation function)
generates a fact containing summary information for a region of the data cube
from a subset (i.e., a set of facts) of the data cube:

D] D] D]

faggregate : >< Doma/;)v T X Dom(‘/;) = X DO’ITL(V;)

i=1 i=1 i=1
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To further develop the data model, the notion of a value aggregated to a higher
granularity has to be introduced in such a way, that it can be stored within the
original data cube. Such a value is derived from the set of values stored in the
pertinent region of the data cube. Surprisingly this is very easy, by refining the
naive definition of the multidimensional database given before. Instead of mapping
a vector k with components kicq1. x|} € Dom(K;), we use a vector 7 of nodes to
with arbitrary granularities. For this to be expressed in terms of the vector E, an
additional element e has to be added to the domain of each vector, which mean

“unbound”. Values are now associated through a relation 7 with
T ATV with 7i; € nodes(D;) and v € Dom(V').

This allows for the storage of aggregated values (or arbitrary data) for any granu-
larity within the same data cube containing the raw facts.

The model, as it was presented so far, does not support the aggregation of
values on demand. That is, all aggregated data items have to be stored in advance or
aggregated after the unavailability of a pre-aggregated value is detected. We regard
this functionality to be an integral part of the OLAP system’s query evaluator and
not of the underlying multidimensional database, because it affects the caching
logic and the load distribution of the query evaluator. For a detailed description

of how this is implemented in the current prototype, please refer to Chapter 3.

2.4.2. Constraints and query evaluation

Queries to a multidimensional database consist of selecting a spatial region of
the hypercube according to constraints on the key-attributes. We disallow test-
ing value-attributes as it is commonly the case in OLAP systems, as this would
make truly multidimensional implementation very difficult and make this model
applicable to relational systems only.

In this model, queries are expressed as sets of constraints C' and a granularity

vector g. The constraints indicate which subset of the hypercube contains relevant
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information, while the granularvector specifies how to display the information and
selects one node per dimension for the associated granularity hierarchy (e.g., in
a database containing sales information over time per store and per product, a

granularity vector might look like § =< month, country, product category >).

The query algorithm proposed in this model is based on term substitution;
for simplicity, we will only consider uniquely decomposable types at the moment.
When starting a query, a set S; = {T} containing an instance of the top level type
is created. Until the desired granularity level is achieved, all nodes in S; are replaced
with their successors which satisfy the given constraints. The algorithm is outlined
for the trivial case of uniquely decomposable granularity hierarchies in Figure 2.4.
As soon as the result sets S; are calculated, a Cartesian product of those will yield
the position vectors of all data points satisfying the given constraints. However, the
Cartesian product can expand to a very large number of position vectors and hide
ranges of data points. For this reason it may be beneficial to retain the sets S; and
use these for fact retrieval. Another approach is the use of ranges as components
to the position vector to retain a more concise representation. The interface to the
physical data storage needs to translate the abstract positional representation into

an access operation.

The algorithm given, works with uniquely decomposable granularity hierarchies
only. In cases, when questions like “What was the revenue for all days belonging
to the calendar year 1999 and not to the fiscal year 19987” are to be answered, it
fails. However, the extension for non-uniquely decomposable nodes is simple. Each
possible path is traversed from the top type T to the desired granularity (which
is a very complex task for large graphs) in the type hierarchy; these subgraphs
are used as input to the query algorithm outlined above, yielding multiple sets
Sij of nodes conforming to all constraints along one path. As soon as all these
sets are available, their intersection is calculated yielding a set which contains only
nodes satisfying all constraints in that dimension. For example, for the above query

would first yield two distinct sets: one would contain all days in the calendar year
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for each dimension D;
initialize a result set S; = {T € nodes(D;)};
while desc(granularity(S;)) # 0 and granularity(S;) >* g;
determine constraints C' C C
which are applicable to desc(granularity(S;));
S = U {y ‘ y € z.descendants A y satisfies all elements of C"};

]

TES;
S; = 5]
end while

end for

Figure 2.4.: The fact selection algorithm for hierarchies of uniquely decomposable

granularities.

1999 and the other all days known to the data base that fall outside of the fiscal
year 1998. The position vector would be generated from the intersection of these
two sets. This is a very expensive proposition, unless a compact, intervall-based

representation is adopted for these sets.

Still, one limitation remains to this algorithm: It fails whenever constraints
are specified which refer to attributes which have a lower granularity level than
the granularity specified in the granularity vector § (e.g., the desired granularity
is “Month” and the “Days” are constrained). This occurs whenever an ad-hoc
aggregate is desired. In the same spirit as before, when we excluded on-demand
aggregation from the multidimensional data model, we disallow this in the fact
selection process. If such functionality is desired, the application requiring the ad-
hoc aggregate has to submit multiple queries and later aggregate the resulting facts.
This guarantees a cleaner separation of mechanism and eases the implementation

of distributed data warehouses based on multi-databases [20].
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/* 1. execute the query for a single dimension */

printf ("==== executing query for Y%s ====\n", dim);

long long target_type_id = repository->get_type_id(dim, gran)
set< long long > result_nodes;

set< long long > active_nodes;

golap: :Path root_path(0); // an empty path

// initialize active set to { root };

active_nodes.insert(repository->instance_at(dim, root_path));

/* 2. calculate the result set */
while (active_nodes.size()) { // as long there are active nodes
/* 2.1. split between result and active nodes */

for(set<long long>::iterator i = active_nodes.begin();

i !'= active_nodes.end();
++i) {
if (repository->get_type_for_instance(*i) == target_type_id) { // compare the granularities

/* 2.3.a this is a result */

result_nodes.insert (i) ;

active_nodes.erase(*i);

/* 2.2. calculate the expanded set */

set< long long > new_active_set;

for(set<long long>::iterator i = active_nodes.begin();
i !'= active_nodes.end();
++i) {
set<long long> new_partial_set = instance_list_to_set(repository->expand(#*i));
new_active_set.insert(new_partial_set.begin(), new_partial_set.end()); // union

}

/% 2.3. apply constraints */

apply_constraints(dim, new_active_set);

/* 2.4. swap */

active_nodes = new_active_set; // swap

Formal Model

Figure 2.5.: A variant of the query evaluation algorithm, as it is used in the proto-

type implementation. It works correctly with non-uniquely decompos-

able nodes.
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UPC pkg. size brand sub-category category department package type diet type
90706287103 6 oz Cold Gourmet Frozen Foods Food Grocery box Diet
16005393282 6 oz Cold Gourmet Frozen Foods Food Grocery box Regular
57986858339 8 oz Frozen Bird Frozen Foods Food Grocery box Diet
67955177490 8 oz Frozen Bird Frozen Foods Food Grocery box Regular
46817560065 2 oz Chewy Industries Candy Food Grocery can Regular
84276830332 2 oz Chewy Industries Candy Food Grocery can Regular
51770124461 2 oz Chewy Industries Candy Food Grocery bottle Regular
33411763259 6 oz Big Can Soft Drinks Drinks Grocery can Diet
95946398896 6 oz Big Can Soft Drinks Drinks Grocery can Regular
88602993232 6 oz Big Can Soft Drinks Drinks Grocery can Diet

Table 2.1.: Example data from the product dimension

2.4.3. An Example

To illustrate how to apply this data model to a real-world problem, parts of the
solution of the often cited grocery-store problem, which was created by Kimball [30]

to illustrate the functionality of a data warehouse, is presented in this section.

The product dimension stores information about the products sold in the gro-
cery stores. The merchandise hierarchy is an important group of attributes and
contains information that uniquely identifies each product (the Universal Product
Code/UPC), the brand, the product category and a sub-category and the depart-
ment the product is sold in. Additionally the package type, package size and diet
type are stored. From the textual description and the sample data in Table 2.1, the
granularity hierarchy which is depicted in Figure 2.6 can be constructed immedi-
ately. Figure 2.7 shows a part of the of dimension-values for the product dimension,

if the data from the sample table was entered into the data warehouse.

The store dimension describes the stores in the grocery chain. It is the geo-
graphic dimension of the grocery database. The store dimension contains a store
identification (the store’s name), the zip code of the store, the county, the state
and the type of store plan. In contrast to the product hierarchy, this hierarchy does
not only consist of uniquely decomposable types, as the floor plan is not related to

the geographic features.

Suppose the data cube contains the sales numbers as a measure and aggregate
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T

department

pkg. size pkg. type category brand diet type

subcategory

UPC

L

Figure 2.6.: Granularity hierarchy for the product dimension.

T
/
Grocery
l
Food box can
| T |
90706287103 84276830332

Figure 2.7.: Tree of dimension-values for the product dimension.
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62

name street address city state region floor plan
Store No. 1 999 Main Street New York NY Eastern Modern
Store No. 2 73 Main Street Chicago IL Mid West Original
Store No. 3 1 Main Street Atlanta GA South East Compact
Store No. 4 575 Main Street Los Angeles CA Pacific Modern
Store No. 5 123 Main Street San Francisco CA Pacific Original
Store No. 6 353 Main Street Philadelphia PA Eastern Compact
Store No. 7 839 Main Street Pittsburgh PA Eastern Modern
Store No. 8 651 Main Street New Orleans LA South West Original
Store No. 9 912 Main Street Seattle WA Pacific Compact
Store No. 10 752 Main Street Dallas TX South West Modern

Table 2.2.: Example data from the

T
floor plan region
state
city
street address
1

store dimension

Figure 2.8.: Granularity hierarchy for the store dimension.
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using summation. An analyst might ask “What were the total sales of frozen foods

for the stores in California?” This question translates into a constraint set
C = {Products.Subcategory = “Frozen foods”, Stores.State = “CA”}
and the granularity vector
g =< subcategory, store > .

Answering this query would traverse the trees of dimension-values and finally yield
two sets, one for each dimension. The first set would include the UPCs of products

belonging to the frozen food subcategory:
S1 = {90706287102, 16005393282, 57986858339, 67955177490}
. The other set would include the stores
Sy = {“StoreNo.4", “StoreNr.5"}

. The position vectors relevant to the query would be the result of a Cartesian

products
Sl X S2

. The corresponding relational query is SELECT * FROM table WHERE table.UPC

in {90706287102, 16005393282, 57986858339, 67955177490} and table.storename
in {‘‘Store No. 4’’, ‘‘Store Nr. 5’’}. However, such a straightforward ap-

proach would prove extremly inefficient with large hierarchies of dimension-values.
Therefore every serious implementation would stop at the subcetegory level and the

store level, because no granularities are defined for more detailed levels. In that case

the query would yield only one position vector, namely < “Frozen foods”, “CA” >.

This would yield a much simple SQL statement SELECT * FROM table WHERE
table.subcategory=’’Frozen foods’’ AND table.state=’’CA’~’.
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2.4.4. Supporting Classifier Systems

Classifier systems are consulted for questions like “Did any sales of large quantities
of Product A occur in Western Europe since last December?”. Apparently they re-
quire a different data layout for optimal operation and constitute what Kimball [30]
calls fact-less data warehouses. While some models support this implicitly [2], they
usually impose a performance penalty for other queries. Aware of this problem, we
support classifiers in our model using binary hypercubes. These result from a trans-
formation of the “normal” data cube into a data cube containing no measures, but
a boolean value. All attributes consist of keys and thus dimension-values. The ag-
gregation function for the boolean values is defined as a logical and or a logical
or depending on the application. This boolean measure can be stored implicitly:
either a fact for a position vector is present or absent. As a result, a query ei-
ther finds facts or fails. If facts are found, the question asked is answered “yes”,

otherwise “no” is returned.

2.4.5. An Assessment

Generally, this model should provide for a far higher degree of parallelism dur-
ing query evaluation than the model discussed before. The trees containing the
dimension-values are totally independent and can be traversed concurrently. It is
thus possible to process the dimensions of a database in parallel when calculating

the pertinent position vectors. Two distinct kinds of parallelism can be identified:

1. external parallelism

The query evaluation algorithm can run concurrently for each dimension. No
communication between these threads of execution is necessary up to the
point where the actual fact retrieval is executed. From our results, a shared-
nothing approach suffices for a reasonable speedup, assuming the meta-data
is replicated. However, in a well designed star-model the same effect may be

exploited.
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2. internal parallelism

Within each instance of the query evaluation algorithm, the expand—constrain
iterations can be parallelized as well. At every expand operation, the active
set can be split into subsets and the algorithm can be performed on those in
parallel. This results in a tree-like branching of the algorithm. At the end, the
union of these partial result sets has to be calculated to produce the result
set. To exploit this type of parallelism a shared-nothing architecture suffices

again.

Furthermore, the constraints can be applied in parallel on a shared memory
machine either by choosing an appropriate data structure or by creating
multiple intermediate sets and intersecting those. Which approach will offer
the best performance depends on the type of queries and the actual hardware

paradigm used.

The direct translation of this data model and query evaluation algorithm should
be possible as well. From the descriptions given above, only four distinct data
structures prove necessary: granularity vectors, which specify the desired level
of detail in queries, sets of constraints, which determine the subset of the data
cube in a query, position vectors, which describe the spatial positions of facts,
and sets of tuples, which encode the query results. Sets are usually reduced to
(ordered) lists, whereas tuples and vectors map either to lists or arrays. Therefore,
this actually requires only two data-types (i.e., lists and arrays).

We expect a very reasonable query evaluation performance, as the complexity
of calculation the position vectors depends mainly on the number of nodes visited
in the granularity hierarchies, because techniques for the efficient implementation
for the storage of the dimension-values can be used, which simplify the evaluation
of range queries and reduce the copying overhead. An even greater incentive to use
this model is the fact, that the constraint application can be carried out in parallel

for the different dimension to generate the sets of permissible indices. The fact, that
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the structural dimension-values are present in a tree allow for the implementation
of sophisticated user interfaces based on browsing this information. The same is

true for the granularity hierarchy.

2.5. Summary

This chapter surveyed the different approaches to modeling multidimensional databases.
As the existing models display major deficiencies either by limiting the parallelism

or preferring relational implementations, a novel data model is briefly introduced
which was designed to scale easily in parallel and distributed environments. We
showed the viability of the model and its fact selection algorithm on some data
from the grocery store example discussed by Kimball [30].

The main benefits of the presented model can be harnessed in applications
with complex modeling needs. The uniform representation of attributes allows
calculations to be performed on the categorical attributes, modifying the dimension
tables. This flexibility may come in handy for deep and wide dimensions, and also
in case dynamic dimensions are necessary. We are currently investigating a number
of problems which may need these features, including a digital library application
which could use dynamic dimensions.

Nonetheless, a high price is paid for these features. Both the space necessary
to store the dimensions-values is very large as well as the amount of memory that
may be used durin the set expansion process. Although we believe that this will
not be a serious problem in practical applications, the worst case space and time
complexity is frightening.

A direct translation of the fact selection algorithm into a program is possible
and only simple data types, such as lists and arrays, are necessary. The imple-
mentation of virtual data cubes consisting of multiple, distributed storage nodes

is possible.
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“The biggest problem is that tools may not work together,
despite vendors’ claims that their products are compatible.”

Communications of the ACM, Sept. 1998

3.1. Overview

Today’s data warehouse and OLAP architectures harbor two major shortcomings:
First, they offer only limited parallelism, which severely hurts the scalability of
these systems. Parallel implementations are based either on pipelining or on parti-
tioning of queries [12]. Both types of parallelization stem from the underlying rela-
tional data base systems and largely ignore the particularities of multi-dimensional
databases, such as independent dimensions. In effect, these parallel data warehouses
are simply data-warehouses built on top of parallel RDMSs. The second shortcom-
ing, which will have an even worse effect in the long term, is the fact that the
present solutions are exclusively proprietary and closed systems, which can inter-
face to a few different data-warehouses only. This may not prove an obstacle to the
deployment and adoption of OLAP-based solutions in the short-term, as every ma-
jor data base vendor offers at least one product for On-line Analytical Processing,
but will become a serious reason problem in the future: With the growing dis-

semination of these products and the increasing amount of inter-company business
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conducted electronically, the demand for a joint analysis of multiple, independently
developed data warehouses will grow. Information technology providers are already
faced with the challenges of a unifying multiple data warehouses whenever com-
panies merge. Of course, the challenges faced in such situations exceed the mere
availability of query and analysis tools and primarily involve the data description
on the meta data level. However, the fact that different tools have different feature
sets and may not work together complicates the task furthermore. Additionally,
the absence of inter-operable components makes it difficult for implementors to
customize the systems by mixing and matching the available components from

different vendors.

While a large amount of publications exist on the various data structures and
associated algorithms for OLAP, it remains a challenging task to implement and
deploy an open system with clearly separated modules, as no standardized ar-
chitecture exists, which describes the common components and functional units
present. This section describes a component based architecture, which builds on
the model described in Chapter 2 for the inter-component interfaces. It allows
both for the development of distributed and parallel OLAP systems consisting
of co-operating modules. The benefit of a well-defined architectural definition is
self-evident: Clearly separated software modules simplify the development pro-
cess considerably and accelerate the construction and deployment of applications.
Different implementations of well-defined interfaces will remain inter-operable, so
that changes are kept local. Above all, simple components with limited function-
ality are easy to design and implement. Complex systems can then be composed

of such small components.

Component-based OLAP systems offer a number of benefits both to the user
and the developer. The user can choose from different suppliers and, to give just
one example, combine different query optimization strategies and query evalua-
tion algorithms. Extensible OLAP systems offer a major benefit to developers, as

well. Post-deployment modifications are simplified and testing of components can
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improve the software quality. This chapter shows how to decompose an OLAP
system into functional units, which can communicate using a “software bus” (e.g.,
CORBA).

A prototype system has been implemented as a proof-of-concept for this design.
This prototype was written in C++ making extensive use of the ISO Standard
C++ Library (formerly known as Standard Template Library), the freely available
CORBA implementation MICO, the Gnu GUILE embeddable Scheme interpreter
and the Gnu C++ compiler. It has been successfully compiled and tested on Alpha,
Intel and PowerPC architectures with Linux and also on a MIPS-based SGI Power
Challenge XL running IRIX 6.21.

This systems initial conception was motivated by the need to replace an older,
C-based research prototype (see [34,35] for a description) with a new, object-
oriented, highly modular and parallelizable system to sustain future research at
the Institute of Software Technology. While the current prototype can not yet act
as a replacement of the current production system, work is being continued with the
intention of providing a complete, extensible and distributed OLAP environment
based on CORBA objects.

3.2. Architectural Considerations

The architecture [43] which is proposed here, fulfills several important, and often

interrelated, goals:

e Modularity.

All modules, which adhere to a predefined interface, can interact seamlessly.

This allows for an individual development of these modules.

e Inter-operability.

1Using egcs instead of the default MIPS Pro compiler.

69



3. A component-based architecture

The system has to work with a wide array of databases and storage models. It
is clearly unacceptable to force a rewriting of the query evaluator whenever
a different data base system is used. As a consequence, the integration of
multiple database systems based on wrapper modules needs to be supported.
We use so called storage managers to achieve such transparent integration.
The storage managers translate requests for facts from the internally used
multidimensional model (i.e., location vectors) to the query language used
(e.g., relational SQL).

e Scalability.

OLAP requires consistent reporting performance, independent of the size
of the underlying database or its dimensionality. Parts of each query can be
materialized in parallel on separate machines. Multiple meta-data repositories
replicate the meta-data across a network. Hierarchical and distributed cache

architectures can maintain large tables of retained query results.

¢ Extendability.

We want to add additional modules without rebuilding the system. Such

modules may include both query optimizers and storage managers.

3.3. Components

This section describes the components necessary to create an OLAP system and
interface it with a data warehouse. The data-flow between these components is
visualized in Figure 3.1: a query tool injects queries into the system, which first
pass through a query optimizer. These optimized queries are then transformed
into an execution plan within a query evaluation module, which is executed
using the cache data and the data warehouse. The data retrieved from these

data sources is then reassembled, cached, and returned to the query tool. A meta-
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data repository supplies information about the structure of the data, on how to

access the data warehouse and regarding the contents of the cache.

3.3.1. Query Optimizer

Every query first passes through the query optimization module where a set of
constraints is mapped to a set of optimized constraints. The only restriction on
the optimization procedure is a trivial one: Both the unoptimized and the optimized
query lead to the same subset of the data cube.

Actually the query optimizer is not a single component in our system, but
an interface to multiple concurrently existing optimization rules. These are tiny
modules transforming the constraints. The constraints are piped through all of
them and they act as filters making it simple to evolve optimization strategies by
chaining different of these modules together. For example, it is possible to start
with a simple optimizer, which eliminates redundant constraints and detects range
queries. When the data warehouse evolves and optimization becomes necessary,
more sophisticated query rewriting can be added. Such sophisticated query rewrit-
ing strategies may exploit the parallelism found in the queries or use the knowledge
gained from analyzing the query histories of users.

The current implementation of the query optimizer consists of a small, but
efficient core for query optimization, mainly removing redundancies. If multiple
constraints are detected for the same key-attribute, the intersection of the permis-
sible intervals of values is retained. For example, if one constraint is 1990 < YEAR
< 1998 and a second constraint demands YEAR in {1998, 1999}, then these two
constraints will be replaced with a single constraint YEAR equals 1998. If the
permissible intervals are all disjunct, query evaluation can abort immediately after
query optimization, because no values can satisfy these constraints. This simple
optimization strategy already results in significantly speed improvement. A second
important optimization strategy already implemented is the detection of range

queries. Because it is usually faster to evaluate a range query, such as 1995 <
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Figure 3.1.: The components of the OLAP system and their communication paths.
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YEAR < 1998 than one based on enumeration of valid choices, special care is taken

to fold enumerations into ranges.

3.3.2. Query Evaluator

The query evaluator module is responsible for evaluating queries, i.e. for creating
position vectors from the constraints and the meta-data, which can be used as
input to the storage managers. For every query, a new instance of this module
can be instantiated. These modules may run on different machines improving the
overall scalability of the system as queries can be processed in parallel.

A number of algorithms offer themselves for query evaluation. We use an algo-
rithm, which closely follows the model described in Chapter 2. A set of permissible
instances is initialized with the T-element. Then the contents of this set are re-
placed with the successors of the elements within the set which satisfy all given
constraints. This expansion process is repeated, until only elements at the level of
detail which was specified by the relevant component of the granularity vector re-
main. The Cartesian product over the permissible instances of all dimensions is the
set of position vectors. The generated position vectors are passed on to the storage
managers. Which storage manager is to be used, is determined using the meta-data
repository. However, this set of position vectors does not only contain vectors which
refer to unique spatial locations, but may also contain elements that denote entire
rows or other subsets of the data space. This preserves the possibility of using ef-
ficient access methods for larger areas (e.g. range-queries of SQL-databases). The
storage managers are called upon to retrieve the tuples from their physical storage.
The results from this retrieval process are then assembles into a data cube again.
For the purpose of returning and caching data cubes, a list-based representation is
used. The assembly process produces such a list from the responses received from
the individual storage managers. If the query result is cacheable, a cache object is
created and a reference to it is stored in the meta-data repository.

For example: we can assume a query which requires a granularity of MONTH in
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the time dimension and has a constraint “YEAR equals 1999”. During expansion,
we first replace the T-element with the parts it consists of (which will have the
type DECADE). In our case that is just 199x (the value of DECADE is unconstrained).
Now we iterate this replacement process, first yielding a set of YEARs and finally the
requested MONTHs. This set will contain 1999 and finally May 1999 and June 1999,
respectively. If a SQL-based data source were used, a query of the form SELECT *
WHERE year=1999 and (month=’’May’’ or month=’’June’’); would be gener-
ated by the database wrapper.

The query evaluation is a critical component for an efficient OLAP system. It
has to perform least-cost decomposition of queries: for example, if all the months
of a year are cached and the data for the entire year is requested, the aggregated
value for the year will not be retrieved from the data warehouse, if calculating it

from the cached data incurs less overhead.

3.3.3. Fact retrieval and Cache access

The OLAP engine needs to access data from various data sources like relational
data warehouses, multidimensional data warehouses and the local cache. We cre-
ate wrapper modules to access all these different data sources in a uniform way
by serving as storage managers. These provide multidimensional abstraction to
the actual data source used. A request to retrieve data is always expressed as a
position vector and the result is always encoded as a set of tuples. This position
vector denotes the spatial location of the requested value within the data cube.
This data cube is virtual structure and may be stored in a number of different
physical storage structure. A storage manager transforms the position vector into
a query which is meaningful to the actual storage method used (e.g., a SQL query).
The mapping between regions of the data cube and storage managers is described
within the meta-data repository. Additional information stored there may include
communication bandwidths, access latencies and related data. From this informa-

tion, the storage managers can be ordered with reagard to the relative cost of

74



3.3. Components

accessing data stored in each. This allows it to prioritize the search for a data
entry, if multiple (possible) storage locations exist. This meachnism is used to pro-
vide a tie-in for the in-memory cache of each computational node. This cache is
always marked as the cheapest method of retrieving a data item. Only, if it is not
found there, other storage managers are considered. The in-memory cache uses
a least-recently-used replacement strategy and stores its entries in an associative
list, which associates position vectors with lists of tuples. This list is physically
realized through a B*-tree. At this time, the only other form of storage supported
are SQL-databases. To access those, SQL-queries are generated from the position
vectors and the meta-data.

Using a uniform interface to access both internal (i.e., cached) as well as external
data simplifies the implementation of the query evaluator considerably and helps
to isolate the system-specific code in these wrapper modules. Caching is an integral
part of our architecture as we cache all query results to exploit the temporal locality
of reference in OLAP applications during user-interaction. At the same time we
reduce the overhead involved in converting position vectors to queries to external
databases or re-aggregating cubes. We represent each cached cube by a separate
cache object. Basically, such an object is simply another storage manager. It wraps
around a previous query result and presents itself to the query evaluator according
to the generic interface.

Currently, caches are local to every workstation. Different strategies to advertise
the cached data globally across multiple machines to build hierarchies of cached
data cubes from both local and remote cache entries are under consideration for

future versions.

3.3.4. Meta-data repository

The meta-data repository is a catalog of information, describing the logical struc-
ture of the data warehouse and their interaction with the data base(s) storing it.

For relational data warehouses, it basically contains a description of the scheme
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of each relation and information on how to map the different data granularities to
tables in the data warehouse. Apart from other meta-data, we keep information
on the currently cached data cubes together with their location in the meta-data
storage. Basically, the meta-data repository maintains a key-value table which pro-
vides read-only access for all modules and write access for the query evaluator only
to register newly created cache entries. Almost all phases of the query evaluation—
and consequently, all components of the OLAP system—depend on data from this
repository (compare Figure 3.1).

For the implementation of distributed data warehouses, replicated meta-data
repositories reduce the communication overhead—and particularly the communica-
tion latencies—considerably. However, the fact that a fair amount of cache-related
meta-data is to be stored, complicates the replication strategy. While read-only
replicas guarantee a high performance, caching is only possible local to each com-
putational node, because the cache entries can not be advertised globally. A dis-
tributed and/or hierarchical cache architecture requires the presence of synchro-

nized cache information.

3.3.5. Query tool

The query evaluator returns the query result as a set of tuples to the query tool
which provides the user interface and constructs queries from user interaction. The
user-interface is primarily concerned with the presentation of the data received
from the OLAP engine. It performs the necessary reduction in dimensionality to
represent the data-cube on a 2-dimensional viewing device. Navigation and data
exploration need the support of an appropriate data presentation, which provides
a point-and-click interface to perform the common OLAP operations (drill-down,
roll-up and pivoting). The data displayed represents the current state of the OLAP
system (i.e., the constraints and granularity) and, for that reason, forms the base
for new queries, resulting in the (typically) high locality of data references in sub-

sequent OLAP operations. In order to assemble ad-hoc queries, a communication
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path to the meta-data repository is necessary. Information regarding the dimen-
sions, granularities and hierarchies of dimension-values is necessary to construct
meaningful queries.

The queries are transformed into a set of constraints and a granularity vector

according to the following rules:

e Drill-down. A component of the granularity vector is replaced with one of
its successors. A constraint may be added at the same time to reduce the

visible domain.

Assume, the user currently views data at the DECADE level and notices an
anomaly within the aggregated data for the decade 199x. To investigate
further, a drill-down occurs to the next more detailed granularity (YEAR).
To evaluate this query, the time-component of the granularity vector, which
initially points to DECADE, is replaced with YEAR. Now imagine, the user
sees that an anomaly is caused by some event in the year 1998. To track
the problem down, only the months of 1998 are required. The granularity
will be adjusted to MONTH and an additional constraint YEAR equals 1998 is
introduced. A slight variation on this theme is the unconstrained drill-down:
in that case, no additional constraints are added and only the granularity
vector is modified. The user may choose to display the data for all JUNEs of
a given DECADE. Such a query may start at the DECADE granularity, with a
constraint on the value of the DECADE only. When this drill-down is issued,
JUNE is added to the set of constraints and the relevant component of the
granularity vector is set to MONTH. As a result of this operation, the values
for DECADE and MONTH are constrained, while YEAR is unconstrained.

e Roll-up. All constraints on the current granularity in the dimension, where
the roll-up occurs, are deleted. The component of the granularity vector cor-
responding to this dimension is replaced with one of its predecessor accord-

ing to a traversal history or default traversal paths. A roll-up from YEAR to
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DECADE clears all constraints set for YEAR and sets the time-component in

the granularity vector to DECADE.

e Pivot. One dimension is replaced with another. Neither the granularity vec-
tor, nor the set of constraints are modified. The pivoting operation affects

solely the way data is presented to the user requiring no reevaluation of the

query.

So far, the presentation module has not been implemented in its final, graphical
form. Instead, the current system prototype echoes the query results to the console

and receives its queries from a command line interface.

3.4. Parallelism

The dimensions of a data cube are independent in OLAP. Since all data is indexed
through these, they perform a similar function as indices on tables in relational
databases. However, no primary index exists. Instead, all indices have an equal
priority. As a consequence, they do not impose any additional constraints on the
ordering of the query evaluation, but allow for a concurrent application of the
query evaluation algorithm in each dimension. Surprisingly, this comes very close
to the original promise of equal access in databases, that was made by relational
databases, but never came true [30]. This type of parallelism takes place between
multiple instances of the query evaluation algorithm that run concurrently. There-
fore it is external to the query evaluation algorithm.

Additionally, the query evaluation algorithm can be parallelized as well. The
model proposed in Chapter 2 is optimized for this: it uses sets as its main data
type and iterates term substitution and the application of constraints to sets. Sets
are a data type, that can be parallelized automatically and efficiently on shared
memory systems [13]. If set partitioning is used, the term substitution process and

applying the constraint can be sped up considerably, as well.
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Apparently, during query optimization two disjunct types of intra-query paral-

lelism can be identified and exploited, which each stem from distinct sources.

1. external parallelism. The query evaluation algorithm can run concurrently
for each dimension. No communication between these threads of execution
are necessary up to the point where the Cartesian product is calculated or
another combination operator is applied. From our results, a shared-nothing
approach suffices for a reasonable speedup, assuming the meta data is repli-

cated.

2. internal parallelism. Within each instance of the query evaluation algo-
rithm, parallelism may be exploited. In the case of the algorithm used in our
implementation, the set expansion and constraint application can be paral-
lelized. At every expand operation the active set can be split into subsets
and the algorithm can be performed on those in parallel. This results in a
tree-like branching of the algorithm. At the end, the union of these partial
result sets has to be calculated to produce the result set. To exploit this
type of parallelism a shared-nothing architecture suffices again, assuming
that the communication architecture used provides sufficiently low latencies.
The performance also depends largely on how much time is consumed for the
encoding, transfer and decoding of the intermediate results. The constraints
can also be applied in parallel on a shared memory machine either by choos-
ing an appropriate data structure or by creating multiple intermediate sets

and intersecting those.

Furthermore, multiple queries to the same data warehouse are also indepen-
dent. For this reason they can be executed in parallel, adding inter-query paral-
lelism. In sum, OLAP lends itself to parallelization very well. For this reason, a
component-based approach—such as the one presented here—does not only im-
prove the maintainability and modularity of the resulting system, but also allows

for the transparent distributing of subtasks across a cluster of computational nodes.
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This approach is a radical departure from the current methods of parallelizing
OLAP queries. Although Gimbel et al. [23], use an object-oriented approach based
on Java to parallelise OLAP queries, they do not provide a fully functional OLAP
kernel. All queries are passed directly to multiple relational databases. Only pipelin-
ing and parallel joining is supported. The design thus follows closely what is known
from parallel data base systems. The worst problem with the chosen approach is
the absence of any cache to hold intermediate results and aggregated values. Sanjoy
Goil describes the solution to a completely different problem of OLAP: he details
the parallel integration of cubes and subcubes in [24]. The presented system uses
partitioning to distributed the evaluation of an aggregation function over multiple

processors.

3.5. Summary

This chapter briefly presented an architecture for modular OLAP systems with
parallel and distributed query evaluation using CORBA objects. Multiple queries
can be distributed across multiple processors/workstations by dynamically start-
ing additional query evaluation modules. Within the query evaluator both the
constraint-application and the fact retrieval support can be implemented to exploit
hardware parallelism. The constraints may applied concurrently to each dimension
(i.e., external parallelism) and the constraint application within a dimension can be
parallelized and the fact retrieval may be also carried out in parallel (i.e., internal
parallelism). As a result, the architecture presented is well suited for distributed
and parallel query optimization. It reflects the formal model of evaluating OLAP
queries outlined in Chapter 2. The fact that this model is based on sets, which
allow for the use of efficient and parallel algorithms, increases the parallelism con-
siderably.

The modules, that have been defined, all adhere to very simple interfaces. Only

four simple data structures are used during inter-module communication:
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1. sets of (position) vectors,
2. sets of constraints,

3. granularity vector,

4. sets of tuples.

The use of CORBA further simplifies the development of components. It pro-
vides a platform and language independent communication path between the var-
ious components.

The subject of modularizing OLAP systems and defining common inter-component
interfaces is highly pertaining, because the definition of a standardized architec-
ture would allow for the component-based development of open, modular and
inter-operable systems. The next generation of OLAP systems will certainly be
required to have a similar structure to what is proposed here, in order to support
a wide-spread adoption of the technology and better integration with the highly-

specialized data mining and knowledge discovery technologies available today.
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“These are wild dreams.”

Mary Shelley, “The Last Man”

4.1. Overview

Although the currently implemented system prototype offers only the basic func-
tionality necessary in OLAP systems, plans for future developments exist already.
In this chapter, some of the major directions considered for future inclusion are
discussed. These planned improvements range from techniques to provide higher
performance, improve the parallel query evaluation, security and data quality to
self-healing databases and On-line Analytical Processing applications in control
systems. Instead on just improving upon the performance or user-interface, the
proposed additions, extensions and optimizations attempt to expand the scope
and applicability of OLAP to a wide number of domains besides the analysis of
traditional business-related information. Areas of particular interest are long run-
ning, time-critical decision taking systems for automated control and adaptive, fi-
nancial planning and control applications offering prediction and adaptive, flexible
response to rapidly changing global markets. These applications are outside of the
current application domains of OLAP systems which are mostly used in business

information systems to reason about strategic decisions and marketing. These tra-

83



4. Extending the scope of OLAP

ditional applications are neither time critical, nor automated. Understandly, these
are two areas were OLAP engines lack the most. In addition, security concerns have
been largely ignored during the last years of development. A simple all-or-nothing
access policy was used, which interferes which the multi-level hierarchies present in
modern organizations. The extensions described here hint to possible solutions for
the problems. It is planned to implement and evaluate these in the future versions

of the system described in the previous chapters.

4.2. High-Performance OLAP

Today, scientific experiments generate enormous amounts of data, often well in the
multi-terabyte range. The COMPASS experiment [18] will generate an object set
of about 20 terabytes. The NA48 experiment at the CERN already records data
at a sustained rate of 20MB/sec [41]. Some scientists [39] already warn, that bus
bandwidths are to become the next bottleneck in data storage systems. However,
parallel I/O techniques, such as the parallel disk model [20,49], are successful in
moving the data in time. Nonetheless, unsolved problems remain for the manage-
ment of large scientific data sets regarding the interoperability of the data reposi-
tories. No agreed specifications of interfaces to the data sets exist, the structure of
the data is not stored independently and the meaningful analysis and exploration
of simulation results is difficult.

The fact that information without appropriate data management and intu-
itive navigation is worthless has already been recognized in the business world.
On-Line Analytical Processing (OLAP) [1,14,15,17, 45, 50] and multi-dimensional
data warehouses [2,22, 28,30, 31, 36, 51| have proven valuable technologies for the
efficient processing of large sets of business data. On-line Analytical Processing
operates within a multi-dimensional model of the source data. This model is gran-
ular, i.e., it allows to view the data at different granularities, where coarser views

are synthetisized from finer data. Using such aggregates, it becomes possible to
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efficiently detect unusual, interesting features in very large data sets. Data min-
ing algorithms, for example, search for patterns in the coarse-grained data first
and access details only where necessary. This mirrors the requirements of modern,
scientific computing which already generates and analyses data which approaches
the size limits for current hardware. An additional benefit of using OLAP for very
large scientific data sets is the availability of meta data. Such meta data can not
only structure the stored data, but also communicate background information on
experiments to further increase the persistent value of a data cube.

On-line Analytical Processing offers intuitive data analysis with interactive
response times in a scalable system. Furthermore the data is inter-operable
between different analysis tools, because most structural information is stored sep-
arately in the meta data. Nonetheless, these techniques are not yet applicable
to data outside of the business domain, and particularly grand-challenge type
problems, for a number of reasons: today’s implementations support only sim-
ple, distributive aggregation functions. The data cube is either pre-materialized
in a central location or the query execution suffers from performance problems;
data cubes are read-only and trigger-conditions are unsupported. Additionally, the
multi-dimensional paradigm leads to problems regarding the efficient storage of the
sparse data cubes and efficient processing of the data: Clustering and partitioning
need to be employed. Still, the efficient implementation and processing of the multi-
dimensional data space remains one of the most challenging research problems, as
modern computer architecture is inherently contradicting such models.

High performance OLAP systems capable of handling the enormous data sets
analyzed in scientific computing pose special requirements and require innovative

solutions:
e Parallelization and distribution.

Modern applications often operate on very large data sets and generate their
output distributed across a cluster of computational and storage nodes. This

trend was accelerated during the last few years because of the improved per-
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formance of relatively cheap workstations [39, 44] and the increased availabil-
ity of middle-ware [40] and software to build (inhomogeneous) clusters from
commodity hardware [3,4, 8, 26]. This changed situation requires a paradigm
shift for On-Line Analytical Systems: Instead of materializing a data cube in
a central location and/or replicating it on slave-servers, a virtual data cube,

which may span a large number of storage nodes, needs to be constructed.

Distributed, hierarchical caches.

Distributed and hierarchical caches permit cache objects to be created local
to the computational nodes where queries are evaluated, but advertise the
cached data globally. If these cache objects are reused and built into a tree,
whole hierarchies of cached data can be created. These hierarchies will reflect

the decomposition of a data cube into consecutively smaller sub-cubes.

Least cost decomposition for queries.

Least cost decomposition of queries has to take multiple aspects of query
evaluation into account. The data availability in an environment with local
and remote caches as well as local and remote data storage facilities has pro-
nounced effects on the latencies for data access. That is, in some cases an
aggregated value can be recalculated faster from cached data than fetched
from a remote data warehouse. At the same time, the cache contents and the
structure of the data warehouse are important (e.g., if all the months of a year
are cached and the data for the entire year is requested, the query evaluator
should not retrieve this aggregated value from the data warehouse, if calcu-
lating it from the cached data would incur less overhead). Graph coloring and
annotating the granularity hierarchy with information regarding the relative

cost of different decompositions is necessary to provide this functionality.
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4.3. Volatile data and writable data warehouses

A wide array of applications will not work with the write-once, read-many-times
semantics of OLAP systems. In certain situations it is necessary to update old
values either to correct a wrong entry or to update a fuzzy value with a better
approximation. While the first case can occur in any application domain, the lat-
ter one will be usually found for problems requiring an iterative approximation of
measures. Various optimization problems in economics belong into this category.
Clearly, data that can be updated after it is initially stored in the data warehouse
can be handled either by re-feeding the entire data warehouse or by treating the
fact as volatile and modifying the algorithms for aggregate calculating, caching and
query evaluation accordingly. Support for such volatile data is the most radical de-
viation from the usual read-only OLAP systems. Supporting a possibly changing
fact base makes eager view materialization strategies infeasible. However, tradition-
ally OLAP systems depended on massive pre-materialization to provide interactive
query results. Even worse, concurrent updates and queries can lead to inconsistent
query results. The reproducability of query results also suffers from this addition.
To permit both the modification of the underlying database and the still guaran-
tee reproducable query results, a versioning system can be used: By time-stamped
every change, queries can be evaluated in any temporal context required.
Support for volatile data permits the monitoring and analysis of processes dur-
ing their run-time. Three kinds of volatility, which offer different chances for opti-

mizations, may occur in the data source:

e Fully volatile. Any data may change at any time and most optimizations
are infeasible. Since caching and pre-aggregation are futile, a fully volatile
data warehouse will can operate on top of any relational database system.
All queries have to be re-computed from the database. The performance
penalty of such a brute-force solution prohibts interactive querying of large

databases.
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e Append-only. New data can be appended at any time. However, the aggre-

gated values to be updated can be pre-determined. That is, most of the cube
is stable while the cube grows as new data is added continuously. Incremen-
tal feeding can be used in such cases. Data warehouses that use incremental
feeding use this approach. A number of algorithms to realize the feeding and

updateing of the aggregates exists [19].

Scattered. Certain sections of the data space may change without notice.
These sections can be non-continuous and scattered. However, it is known
in advance which sections can change. In this case, most of the cube can be

pre-materialized.

To negotiate the particular challenges of volatile data cubes—and particularly fully

volatile cubes—a number of different strategies is available:
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e Lazy view materialization. Views are materialized on demand. Interactive

response times are achieved using parallelization and distribution. No upper
limit for the response time can be given. Caching is used to exploit the

temporal locality in accesses to atomic facts in consecutive OLAP queries.

Bottom-up update propagation. This technique propagates updates to
the fact base bottom-up; i.e., the materialized views are notified of a change
in the underlying fact base. Whenever such an update happens, a view de-
pending on the updated fact either needs to be updated or purged from the
cache and recalculated when necessary. The most important benefit of such
an incremental update procedure consists in the knowledge of the change
that occurred. Often the aggregated value can be adjusted quickly using this
additional knowledge. This is the case if stateful aggregation functions are
used. A stateful aggregation function contains an internal state such that it
can be updated when notified of a change. Examples of such stateful aggre-

gation functions are summations, products and counts. The calculation of an
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average is more complicated: In order to express it statefully, both the sum
and the count need to be retained. When an update occurs these are up-
dated accordingly and an average can then be calculated from these updated

values.

Bottom-up propagation of updates is also a requirement for the introduction
of active data base elements, such as rules and triggers. If a rule is evaluated
on a particular view, this view has to remain current with all updates to the

associated raw data. Bottom-up update propagation assures this behavior.

e Approximation of aggregate values. It remains to be evaluated, whether
approximations of the aggregated value may be used to improve response
times. The topic of approximating aggregated values has received some inter-

est lately [49], but it is unclear whether it is useful in real-world applications.

Furthermore, an arbitration mechanism is required to maintain consistent queries
during updates. Either a versioning system (in the spirit of the VNC algorithm,
which was originally designed to retain an operational system while re-feeding the
warehouse, introduced by Quass et al. in [42]) or a fact-based locking with multiple
readers can be implemented. Either way, light-weight transactions are introduced
into the OLAP-world.

4.4. Rules and Triggers

A natural extension of decision support systems consists in the ability to take
decisions in accord with preset rules or goals. Whenever a condition specified in
those rules is detected, an appropriate action is taken.

The Event—Condition—Action rule model is mostly used in active databases.
Whenever a certain action (e.g., an insertion) is executed on the fact-base, a con-
dition is evaluated. In relational database systems, such a condition usually con-

tains a query and a test on the result of this query. If this condition evaluates
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to true, the specified action is triggered. This action may in return cause events,
condition tests and actions to be taken. OLAP systems differ slightly from this:
At the higher levels (i.e., the levels containing aggregated data), only update op-
erations remain—whenever the fact-base is changed, any modifications propagate
up the aggregation hierarchy, where they become visible as update events to the
aggregated data. The number of paths, which will be followed—assuming, that
paths which contain no views with triggers are abandoned—, is less or equal to the
number of active rules defined for the data cube. The maximum cost of following
an aggregation path is a linear function of the depth of the aggregation hierarchy
and the cost for updating the affected views. As a consequence, it is possible to
determine the maximum amount of rules that may exist at one time and still ob-
tain a given response time to all events. This makes it feasible to decide during the
insertion of a rule, whether it can still be evaluated within a predefined latency or

whether the rule should be rejected for violating a timeliness property.

Adding priorities to rules requires only a minor modification to the updating
algorithm: During rule creation, the rule priorities have to be propagated down-
ward through the view hierarchy. During rule evaluation, this information is now
available at every branch (i.e., when a view is updated, which is part of multi-
ple view is with attached rules) and the possible paths are followed in the order
corresponding of their priorities. In this context, different priorities for rules are
equivalent to different qualities of service. Higher priorities indicate a request for
a better quality of service. In case of extremely high system loads, lower priority

rules are facing a higher risk not to be evaluated after an update event.

To date, triggers are not directly supported in OLAP systems. Current solutions
revert to defining rules and triggers for underlying relational systems in ROLAP.
Although the functionality is equivalent for such a solution, it appears preferable
to introduce triggers within the multi-dimensional model of the OLAP engine it-
self. The direct benefits are those mentioned above, i.e. the possibility to prioritize

rules and use aggregated data directly in trigger conditions. This simplifies the
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programming model for triggers and also provides a convenient way to implement
an on-demand updating of certain sections of the data cube, if a semi-eager mate-
rialization strategy is chosen (i.e. a materialization strategy which keeps parts of
the data cube materialized, while recalculating others).

No implementation of the suggested trigger mechanism exists so far. However,
a related mechanism is used in a prototype developed at the Technical Research
Center of Finland. Kiviniemi et. al [32] report that they use lazy aggregation tech-
nique to optimize OLAP for real-time applications. Their approach is based on the
evaluation of a consistency criterion, which is reevaluated after each update event

to decide whether certain aggregates should be recalculated.

4.5. OLAP for Control Systems

Interactivity and flexible, human-readable reporting are usually seen as defining
components for on-line analytical processing. This requirement stems from the
strong foundations of OLAP as a decision support tool. In contrast, most control
applications do not offer and can not use a point-and-click interface to the data
analysis tools during most of their operation. Still, because the point—and—click
user interface known from OLAP can function both as a programming interface
(to define rules and actions) and a diagnostic tool (to view and analyze the data
base) for a control system, even the interactivity requirement of OLAP is satisfied.

Active OLAP systems result from the integration of analytical and decision
support capabilities with active rule elements, which initiate actions whenever
the fact-base satisfies pre-determined conditions (compare Section 4.4). In effect,
active OLAP provides a very powerful mechanism for automated decision-making
in control systems.

One particularly powerful aspect of a control system based on active OLAP, is
the programming model. It separates the aspects of designing an automated control

system into different tiers (which coincide with the task performed in traditional
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control systems):

e Data acquisition. At the lowest level, data collected from sensors is mapped
into values of a database system—the semantics of the sensor readings is

defined and data conversions are performed.

e Data analysis. Next, an intermediate layer extracts analytical data and
synthetises a system state from the available fact-base. This state is repre-
sented as values in one or multiple views of the data-cube. The design of this
layer involves the usual tasks in OLAP design of selecting appropriate views

and the providing consolidation functions.

e Control. At the highest level of the system, conditions in the database are
mapped back to actions according to predetermined rules. These rules provide

the control logic and form the foundation of the decision taking process.

The above aspects of a control system can also be found in traditional implemen-
tations of such systems. However, in contrast to the clear separation of responsi-
bilities present in an active database system, the classic approach to the design of
a control systems keeps those three system components interwoven. By separating
these three aspects of designing and implementing automated control applications,
both the maintainability and the re-usability of the resulting software system is
improved. All communication between the components is carried out through the
OLAP system, that chains them together and encapsulates the control logic in
its meta-data and rule-set. Another major improvement of OLAP-based control
systems over traditional systems is the historization concept inherent to OLAP:
New information is appended to the data-base and data analysis is always done
in a temporal context on a subset of the available (historic) data. Paired with the
trigger mechanism and an updated fact-base, powerful adaptive control systems
emerge. As a result, OLAP can become both the programming paradigm and the
programming environment for data analysis and control systems. During program-

ming, testing and diagnosis, the point-and-click interface for the data analysis and
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decision support functions of an OLAP system can provide the user-interface to
data-intensive control applications. It permits customization of real-time appli-
cations from a reusable foundation by using the meta-data to specify the data
acquisition, data conversion, data analysis and the rule-action patterns for a given

problem domain.

4.6. Security Considerations

Basically, information security in both relational and multi-dimensional data bases

includes the same three aspects:

1. Secrecy is the protection of disclosure of information.

2. Integrity is the prevention and detection of improper modification of infor-

mation.

3. Availability is the prevention of improper denial of services.

For OLAP applications, the secrecy aspect is most important and this section
focuses on it. This can be easily justified: The integrity of the data can be assured
easily using the same mechanisms, as for relational data bases. The same is true for
availability. Secrecy is tightly coupled with the application environment of the data
base and with the internal policies of the organization. As such, the organization
structure of an organization needs to be modeled to provide a non-intrusive yet
powerful security model.

The various combinations of access necessary for the proper functioning of a
database system are often characterized as the roles known to the data base system.
At the most basic level, this would differentiate between the administrator and
users. In reality, usually far more roles are necessary, depending on the data to be
stored, often even different positions within the same project group have different
access permissions. Instead of granting the same permissions for the entire data

base, access rights for distinct entities stored within the data base may differ.
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The access to the basic facts stored within the data base is determined by the
policy data stored with it. This policy data consists of permissions, which have
been made explicit (either directly specified or indirectly). However, for OLAP ap-
plications, access control based solely on basic facts will not provide the necessary
features. Suppose a multi-dimensional database system employed in an organiza-
tion with multiple branch offices: In such an environment, employees of a branch
office may have access to the data indicating their own performance (e.g., sales
figures), but not to the data of other branches. At the same time, the aggregated
data will be less sensitive (e.g., the average/total sales for a region). In contrast
to most relational database systems security in data warehouses cannot depend on
access information indicating whether access to a certain table may be granted,
but rather closely follows the semantics of security in some object-oriented data

base systems, which implement a per-object security property.

However, introducing security using a scheme different from all-or-nothing has
one major drawback: the access permissions of the user executing the query become
an integral part of the query’s constraints. Formally, the query results for the same
query ¢ for a user ¢ and a user j will differ result(query, i) # result(query, 5), if the
permissions for these users differ perm(i) # perm(j). Any model will need to take

this anomaly into account and treat a user’s permissions as an implicit constraint.

Apparently the integration of more sophisticated security policy than all-or-
nothing will consume a considerable amount of storage space and introduce a
performance penalty. Why would any sane data base designer consider this then?
The answer is simple: Data on business processes is sensitive, but needs to be shared
within an organization. Particularly, data in decision support systems, which allows
the deduction of strategic decisions, has to be protected from spying eyes. On the
other hand, locking this data down will not benefit any company, either. A number
of analysts and managers will need continuous access to some of this data (more
specifically, the data concerning their area of work), to determine their current

performance and help them plan ahead. A sophisticated security policy would

94



4.6. Security Considerations

increase the value of any commercially available OLAP solution and would be far
close to the requirements of business users than currently available systems. A
number of requirements, governing how to implement security for data warehouses
in such a way that it provides a solution well-suited to the user’s needs and is as

non-intrusive as possible, can be established:

Easy mapping. To introduce an effective security policy, both users and data base
administrators have to understand and accept it. To simplify this, it is paramount
to provide an easy mapping from the organisatorical hierarchy to the internal
model of security permissions. The organizational structure will usually be well
understood and should provide a foundation for data base security. It has to be
possible to express the organizational structures found in most organizations within

the security model. For example, the following rule-set may apply:

1. Upper management has access to all data.
2. Middle management has access to the data pertinent to their work.

3. Departments are a logical grouping and decouple access patterns. Users from
one department will usually not have access to all the data from other de-

partments.

4. Project groups are assembled ad-hoc and have access to parts of the infor-

mation from various departments.

5. An employee may be assigned to multiple project groups. In addition different
employees within the same department may have different levels of access to

the departments data.

Such organizational patterns make it necessary to provide a very fine-grained ac-
cess control, which allows the grouping of arbitrary subsets of the subjects and
objects. The resulting structures are similar to the hierarchies of granularities and

dimension-values which are discussed in Chapter 2.
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Fine-grained. The unit of protection must be the fact itself. Different entries at

the same level of aggregation may be accessed by different user groups.

A single data-cube. A few security models have been proposed, which would
require to materialize a separate cube for every set of access permissions. [29] This
is problematic, if given a large amount of facts (requiring large cubes) or a large
number number of different permission sets (requiring a large number of cubes).
In typical OLAP systems, both of these cases will coincide, rendering this solution
infeasible.

In addition to reducing the storage size, a single cube simplifies the maintenance
and updating of the data warehouse. In addition it will have one large unified cache,
which will accelerate the query performance considerably compared to the large

number of separate caches for the other solution.

Compact storage. Security should not increase the required storage space un-
reasonably. The overhead added to the size of the facts is a critical factor, as a
large number of facts will exist (many orders of magnitude more, than entries in

the meta data repository).

Fast evaluation. The adoption of a security policy should not slow down the

performance of the OLAP system unreasonably.

Economy of mechanisms. To guarantee simplicity, efficiency and maintainabil-
ity, no new mechanisms should be introduced. Any new mechanism could limit
the performance and add another possible bottleneck to the system. Instead, the
core functionality of a multi-dimensional database system, which certainly will be
well-optimized, should be extended to enforce the security policy. This will simplify
other aspects of the design, such as caching, as well.

We propose a token based approach to the modeling of security policies, which

manages those tokens in a dedicated dimension with some support from the meta
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data repository. In this solution, tokens are used to determine whether a given is
permitted to view a cetain entry. In order to realize that, all entries are distributed
along an artificial security dimension. The domain of values in that dimension
are the above-mentioned tokens. A user is given access to a fact, only if he is in
possession of a matching token. As a result tokens act as a lock to each database
entry and access is granted only if a user has a corresponding key in his keychain.
The keychain in turn, is represented using a tree-based capability model, which
encodes the organizational structure and security policies of an organization. In
this model, each user is made up of a hierarchy of access tokens. It is thus possible

to use the same model techniques as for dimension-values and granularities.

This combines the benefit of a fixed size token with the flexibility to model
organizational structures, such as the one outlined above. Every fact within the
data base will contain a field indicating the necessary token to access it. However,
there will not be a one-to-one relationship between the tokens and the facts; in
reality, facts with the same semantics will share the same access token. A typical
case of facts with the shared permissions (and consequently same tokens) is the

information accounting information gathered within the branch office.

The use of a dedicated dimension to store and evaluate the security information
has a number of advantages: the security policy is enforced within the OLAP
server, which improves the overall system security. Nonetheless, some client co-
operation is necessary, as the client needs to pass an implicit constraint, which
specifies the current user, to the server. In order to ensure security during this
process, an authentication procedure needs to be used during the connection to
the OLAP server. This authentication may set this implicit constraint for the
opened connection, which would ensure safety even during the communication with

untrusted clients. Such an approach should guarantee the secrecy of the stored data.

Another benefit of using a dimension to store the access permissions becomes
evident immediately, when modeling the security policy of any hierarchical organi-

zation: While the finest granularity of the dimension will contain the access token
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necessary to access the facts stored within the data base, the coarser granularities
will model how the access rights associated with these tokens are mapped to the
project groups, departments and employees.

To determine the access rights to an aggregated value, at least three distinct

possibilities exist;:

e Minimum or Intersection. Only users with access to all details are allowed
to view the aggregate. This is a conservative approach, which is certain to
evade all tracking attacks. However, it is a rather bad choice as a default

since it severely restricts the information flow.

e Maximum or Union. Any user with access to one of the details is given full
access to the aggregate. Although this constitutes an optimistic approach, it

will mostly match the policies implemented in organizations.

e Explicit. The meta data contains an explicit access policy. This may be
used to give any user full access to an aggregate. Whenever access policies
outside of the ones described above are necessary—for example, if data from
a certain aggregation level on should be public—, an explicit specification of

the access rules becomes necessary.

4.7. Data Quality, Pruning and Data

Reconstruction

One of the primary concerns in decision support is the quality of the data that de-
cisions are based on. It can be best defined as the fitness for use [48], which already
implies that the concept of data quality is relative. For this reason, the data quality
appropriate for one use may be insufficient for another use. Since data warehouses
increased the trend towards multiple uses of the same data, a portable method

to describe data quality has to be specified. The representation of data quality is
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straight-forward: Usually a percentage value describes the reliability of a fact. Such
percentages can be mapped to fuzzy categories such as “credible”, “improbable”,
etc. However, processing the quality-annotated data leads to a number of interest-
ing questions when aggregating the data such as “Should only sufficiently reliable
data be aggregated?” and “How does one derive a measure of reliability for an ag-
gregated value from the atomic facts?” These questions have not been sufficiently
answered, yet. However, as soon as these problems are overcome, then decision
support will be lifted to an entirely new level: Analysts will be able to require the
system to give responses that exhibit an arbitrary, user-defined probability. An
appropriate representation of data quality permits the storage of predicted values
with the normal data. Predicted facts can be annotated with a probability value.

Aside from storing information on the quality of data, another interesting ap-
plication concerned with the quality and precision of data is the pruning of the
fact base. For processes which continuously record new data at a high rate, such
as intra-day stock prices, it may not prove practical to store all available facts at
their finest granularity. Although recent events need to remain accessible in detail,
older information may not be required in such detail. If this is true for a given
application, detailed values need to be retained beyond a pre-set data lifespan.
After that, only aggregated summary data remains stored within the data base
and the detailed data is archived. If it should become necessary, aggregated data
and neighboring facts may be used to approximate facts that where removed, if
retrieving the raw data would take too long. This process involves the deduction of
a plausible value from the remaining data base. A variety of different approaches

to this reconstruction are available:
e Interpolation. The missing data may be interpolated from its neighbors.

e Neutral elements/Null values. An artificial fact can be generated which
contains the neutral element regarding the applicable aggregation function

(e.g., the number 0 regarding a summation). For these artificially generated
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elements, a reliability (i.e., a data quality) of 0% is to be assumed.

e Statistical methods. Additional facts can be generated according to the
statistical distribution expected for the data base. This approach should offer

the best approximation of the original fact.

e Approximation functions and compressed storage. If an approxima-
tion function was generated before the facts where pruned from storage [49]
(i.e. a lossy compression was applied), the stored function will directly yield

an approximation.

Pruning and archiving is an effective method to reduce the size of a data warehouse
for long-running data collection and analysis. Recent research [49] shows that data
cubes can be approximated using wave-lets and related structures. This constitutes

a kind of pruning, as not just the data volume but the precision is reduced as well.
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“It was not even forgery.
It was merely the substitution of one piece of nonsense for
another.”

George Orwell, “1984”"

On-line Analytical Processing (OLAP) is a relatively new database technology,
developed to provide intuitive data analysis with interactive response times even
for very large data bases. The main motivation behind its introduction was the
fact, that modern transactional databases reach a peak trough-put in excess of
one hundred thousand transactions per second while data analysis neither offered
the required performance nor were the user-interfaces simple enough to be used
effectively by someone unfamiliar with the data base system. In this environment,
the point-and-click simplicity of OLAP coupled with a more natural—mamely
multidimensional—data model quickly established themselves as a vital segment
in the data analysis market. Today, the market size for OLAP solutions doubles
approximately every year.

However, due to the relative novelty of OLAP, both a widely agreed specifi-
cation of the features required in such a system and a versatile multidimensional
data model are still lacking. A number of different modeling approaches exist, but
none of them fulfills the performance promise of OLAP. Particularly, the most

widespread method to implement On-line Analytical Processing system, i.e., by
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mapping the multidimensional operations to relational data base queries, offers
suboptimal performance. In response to this unsatisfactory situation, a novel, set-
based data model for OLAP was introduced in this thesis. It is based on sets and
designed to provide both an easy translation into source code and simple verifica-
tion of correctness. The most noteworthy feature of this model is its high amount
of parallelism and the clear separation of functional components. In contrast to
other models, it was designed with the intent of allowing for a highly parallel and

distributed query evaluation.

The maturing of the technology and the recent developments in data warehous-
ing and especially the ongoing attempts to standardize the meta data description
languages, are welcome signs that solution vendors finally embrace open and inter-
operable solutions. Still, the current systems provide at most a compatibility to
multiple databases. While modern software engineering practice defines applica-
tion specific protocols for inter-operable objects and components, no such project
has begun for OLAP. Nonetheless, a component-based approach to building On-
line Analytical Processing systems offers a number of advantages, such as simpler
development, faster deployment and the possibility to combine modules from vari-
ous vendors as needed. A component-based solution can split the system along its
functional boundaries into a query optimizer, query evaluator, data base access,
cache modules and meta data repository. These modules are mostly independent
and the inter-module communication is simple enough to be based on a common

middle-ware technology such as CORBA.

Before OLAP can become such an ubiquitous technology as data base systems,
a number of extensions to the basic functionality defined by Codd become nec-
essary. On the data engineering front, data quality and security remain the next,
big challenges. Technical aspects such as high-performance implementations, the
addition of active data base elements (rules and triggers) and support for volatile
data (as opposed to write-once, read-many-times) will remain the focus of research

for the next years. Only when these basic limitations have been overcome, the use
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of OLAP as a programming paradigm for data-intensive control systems can be
explored.

OLAP is perceived in different ways by different user communities. All these
views have one thing in common: they see it as one of the most important emerging

technologies which promises to revolutionize data-intensive computing.
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